Semi-Supervised Clustering for Architectural Modularisation

被引:2
|
作者
Feist, Sofia [1 ]
Sanhudo, Luis [1 ]
Esteves, Vitor [1 ]
Pires, Miguel [2 ]
Costa, Antonio Aguiar [1 ,3 ]
机构
[1] Built CoLAB Collaborat Lab Future Built Environm, Rua Campo Alegre 760, P-4150003 Porto, Portugal
[2] CASAIS Engn & Construcao, Rua Anjo 27, P-4700565 Braga, Portugal
[3] Univ Lisbon, Inst Super Tecn, CERIS, Av Rovisco Pais 1, P-1049001 Lisbon, Portugal
关键词
modular construction; modularisation; building information modelling; machine learning; semi-supervised; clustering; DESIGN; CONSTRUCTION; MODULARIZATION; ALGORITHM;
D O I
10.3390/buildings12030303
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Modular construction allows for a faster, safer, better controlled, and more productive construction process, yielding quality results with low risk and controlled costs. However, despite the potential advantages of this methodology, its adoption has remained slow due to the reasonably high degree of standardisation and repetition that projects require, inexorably clashing with the unique building designs created to meet the clients' needs. The present article proposes performing a modularisation process after the building design is complete, reaping most benefits of modular construction while preserving the unique vision and design of the building. This objective is achieved by implementing a semi-supervised methodology reliant on the clustering of individual rooms and subsequent user validation of the obtained clusters to identify base modules representative of each cluster. The proposed methodology is applied in a case study of an existing apartment complex, in which the modularisation process was previously performed manually-thus serving as a baseline. The acquired results display a 99.6% reduction in the modularisation process' duration, while maintaining a 96.4% Normalised Mutual Information Score and a 93.3% Adjusted Mutual Information Score, justifying the continuous development and assessment of the methodology in future works.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Weighted Semi-supervised Fuzzy Clustering
    Kong, Yi-qing
    Wang, Shi-tong
    FUZZY INFORMATION AND ENGINEERING, VOL 1, 2009, 54 : 465 - 470
  • [32] SemiSync: Semi-supervised Clustering by Synchronization
    Zhang, Zhong
    Kang, Didi
    Gao, Chongming
    Shao, Junming
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS, 2019, 11448 : 358 - 362
  • [33] Categorization Using Semi-Supervised Clustering
    Hu, Jianying
    Singh, Moninder
    Mojsilovic, Aleksandra
    19TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOLS 1-6, 2008, : 3666 - 3669
  • [34] Semi-Supervised EEG Clustering With Multiple Constraints
    Dai, Chenglong
    Wu, Jia
    Monaghan, Jessica J. M.
    Li, Guanghui
    Peng, Hao
    Becker, Stefanie I.
    McAlpine, David
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (08) : 8529 - 8544
  • [35] Convergence Analysis of Semi-supervised Clustering Ensemble
    Chen, Dahai
    Yang, Yan
    Wang, Hongjun
    Mahmood, Amjad
    2013 INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE AND TECHNOLOGY (ICIST), 2013, : 783 - 788
  • [36] A semi-supervised clustering algorithm for data exploration
    Bouchachia, A
    Pedrycz, W
    FUZZY SETS AND SYSTEMS - IFSA 2003, PROCEEDINGS, 2003, 2715 : 328 - 337
  • [37] Semi-supervised discriminative clustering with graph regularization
    Smieja, Marek
    Myronov, Oleksandr
    Tabor, Jacek
    KNOWLEDGE-BASED SYSTEMS, 2018, 151 : 24 - 36
  • [38] MVS-based Semi-Supervised Clustering
    Yan, Yang
    Chen, Lihui
    Chan, Chee Keong
    2013 9TH INTERNATIONAL CONFERENCE ON INFORMATION, COMMUNICATIONS AND SIGNAL PROCESSING (ICICS), 2013,
  • [39] A Novel Initialization Method for Semi-supervised Clustering
    Dang, Yanzhong
    Xuan, Zhaoguo
    Rong, Lili
    Liu, Ming
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, 2010, 6291 : 317 - 328
  • [40] Text Classification Using Semi-Supervised Clustering
    Zhang, Wen
    Yoshida, Taketoshi
    Tang, Xijin
    2009 INTERNATIONAL CONFERENCE ON BUSINESS INTELLIGENCE AND FINANCIAL ENGINEERING, PROCEEDINGS, 2009, : 197 - 200