CMOS Multi-Frequency Lock-in Sensor for Impedance Spectroscopy in Microbiology Applications

被引:2
|
作者
Hosseini, S. Nazila [1 ]
Lazarjan, V. K. [1 ]
Akram, M. Makhdoumi [1 ]
Gosselin, Benoit [1 ]
机构
[1] Laval Univ, Dept Elect & Comp Engn, Quebec City, PQ, Canada
关键词
lock-in amplifier; capacitive transimpedance amplifier; microbial monitoring; electrochemical impedance spectroscopy;
D O I
10.1109/NEWCAS52662.2022.9842207
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents the design of a CMOS lock-in amplifier (LIA) encapsulated with an impedance sensor for microbial monitoring applications. The custom integrated LIA is designed and fabricated in a 0.18-mu m CMOS technology. It includes a fully differential switched-capacitor transimpedance amplifier as the main building block of the lock-in amplifier. In this design, chopper stabilization is used in the capacitive transimpedance amplifier to reduce the noise and improve the sensor's sensitivity. The proposed LIA contains a band-pass filter with 0.88 quality factor to pass signals at selectable center frequencies of 1, 2, 4, and 10 kHz; a programmable gain amplifier, a mixer, and a low-pass filter to extract impedance changes caused by microorganism growth at different frequencies. The transimpedance amplifier has a gain of 54.86 dB, and an input-referred noise of 58 pA/ root Hz at 1 kHz. The whole sensor has a sensitivity of 240 mV/nA. It consumes a power of 817.56 mu W from a 1.8V power supply and has a total harmonic distortion of -72.7 dB.
引用
收藏
页码:129 / 133
页数:5
相关论文
共 50 条
  • [31] Proposal of a Single-Shot Multi-Frame Multi-Frequency CMOS ToF Sensor
    Shahandashti, Peyman F.
    Lopez, P.
    Brea, V. M.
    Garcia-Lesta, D.
    Heredia-Conde, Miguel
    2021 28TH IEEE INTERNATIONAL CONFERENCE ON ELECTRONICS, CIRCUITS, AND SYSTEMS (IEEE ICECS 2021), 2021,
  • [32] CMOS Impedance Spectroscopy Sensor Array with Synchronous Voltage-to-Frequency Converters
    Ali, Areeb
    Pal, Neelanjana
    Levine, Peter M.
    2015 IEEE 58TH INTERNATIONAL MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS (MWSCAS), 2015,
  • [33] A Software-Based Lock-in Amplifier for Optical Spectroscopy Applications
    Fonseca, Hugo
    Lima, Ricardo
    Rativa, Diego
    2022 SBFOTON INTERNATIONAL OPTICS AND PHOTONICS CONFERENCE (SBFOTON IOPC), 2022,
  • [34] A Survey of Low-cost Lock-in Amplifiers for Sensor Applications
    Akshaya, S.
    Rao, Sethuraman N.
    Bennaceur, Keyan
    2018 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATIONS AND INFORMATICS (ICACCI), 2018, : 2486 - 2490
  • [35] A Genaralized Multi-Frequency Impedance Matching Technique
    Maktoomi, M. A.
    Gupta, R.
    Maktoomi, M. H.
    Hashmi, M. S.
    Ghannouchi, F. M.
    2016 16TH MEDITERRANEAN MICROWAVE SYMPOSIUM (MMS), 2016,
  • [36] Multi-Frequency Impedance Myography: The PhaseX Effect
    Kusche, Roman
    Ryschka, Martin
    IEEE SENSORS JOURNAL, 2021, 21 (03) : 3791 - 3798
  • [37] CMOS lock-in optical sensor for parallel detection in pump-probe systems
    Light, Roger A.
    Smith, Richard J.
    Johnston, Nicholas S.
    Somekh, Michael G.
    Pitter, Mark C.
    OPTICAL SENSORS 2011 AND PHOTONIC CRYSTAL FIBERS V, 2011, 8073
  • [38] Multi-frequency ECT with AMR sensor
    He, D. F.
    Shiwa, M.
    Jia, J. P.
    Takatsubo, J.
    Moriya, S.
    NDT & E INTERNATIONAL, 2011, 44 (05) : 438 - 441
  • [39] Dynamic impedance spectroscopy using dynamic multi-frequency analysis: A theoretical and experimental investigation
    Koster, Dominique
    Du, Guoqing
    Battistel, Alberto
    La Mantia, Fabio
    ELECTROCHIMICA ACTA, 2017, 246 : 553 - 563
  • [40] Frequency Synchronization Analysis in Digital lock-in Methods for Bio-impedance Determination
    Brajkovic, Robert
    Zagar, Tomaz
    Krizaj, Dejan
    MEASUREMENT SCIENCE REVIEW, 2014, 14 (06): : 343 - 349