AUTOMORPHISM AND OUTER AUTOMORPHISM GROUPS OF RIGHT-ANGLED ARTIN GROUPS ARE NOT RELATIVELY HYPERBOLIC

被引:1
|
作者
Kim, Junseok [1 ]
Oh, Sangrok [1 ]
Tranchida, Philippe [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Math Sci, 291 Daehak Ro Yuseong Gu, Daejeon 34141, South Korea
基金
新加坡国家研究基金会;
关键词
automorphism group; right-angled Artin group; relative hyperbolicity; FINITENESS PROPERTIES; GEOMETRY;
D O I
10.1017/S0004972721001258
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the automorphism groups of right-angled Artin groups whose defining graphs have at least three vertices are not relatively hyperbolic. We then show that the outer automorphism groups are also not relatively hyperbolic, except for a few exceptional cases. In these cases, the outer automorphism groups are virtually isomorphic to either a finite group, an infinite cyclic group or GL(2)(Z).
引用
收藏
页码:102 / 112
页数:11
相关论文
共 50 条
  • [41] Liftable automorphisms of right-angled Artin groups
    Oh, Sangrok
    Seo, Donggyun
    Tranchida, Philippe
    JOURNAL OF GROUP THEORY, 2024,
  • [42] Surface subgroups of right-angled Artin groups
    Crisp, John
    Sageev, Michah
    Sapir, Mark
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2008, 18 (03) : 443 - 491
  • [43] Embedability between right-angled Artin groups
    Kim, Sang-Hyun
    Koberda, Thomas
    GEOMETRY & TOPOLOGY, 2013, 17 (01) : 493 - 530
  • [44] Palindromic automorphisms of right-angled Artin groups
    Fullarton, Neil J.
    Thomas, Anne
    GROUPS GEOMETRY AND DYNAMICS, 2018, 12 (03) : 865 - 887
  • [45] EFFECTIVE QUASIMORPHISMS ON RIGHT-ANGLED ARTIN GROUPS
    Fernos, Talia
    Forester, Max
    Tao, Jing
    ANNALES DE L INSTITUT FOURIER, 2019, 69 (04) : 1575 - 1626
  • [46] Amenable covers of right-angled Artin groups
    Li, Kevin
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2023, 55 (02) : 978 - 989
  • [47] The R∞-property for right-angled Artin groups
    Dekimpe, Karel
    Senden, Pieter
    TOPOLOGY AND ITS APPLICATIONS, 2021, 293
  • [48] Algebraic invariants for right-angled Artin groups
    Papadima, S
    Suciu, AI
    MATHEMATISCHE ANNALEN, 2006, 334 (03) : 533 - 555
  • [49] The action dimension of right-angled Artin groups
    Avramidi, Grigori
    Davis, Michael W.
    Okun, Boris
    Schreve, Kevin
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2016, 48 : 115 - 126
  • [50] GROUPS QUASI-ISOMETRIC TO RIGHT-ANGLED ARTIN GROUPS
    Huang, Jingyin
    Kleiner, Bruce
    DUKE MATHEMATICAL JOURNAL, 2018, 167 (03) : 537 - 602