A new lower bound on the order of a critical edge-chromatic graph with given small girth

被引:0
|
作者
Haile, D [1 ]
机构
[1] SO ILLINOIS UNIV,DEPT MATH,CARBONDALE,IL 62901
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A graph is of class 2 if its edge-chromatic index is greater than its maximum degree. A class 2 graph G is critical edge-chromatic if the removal of any edge reduces its chromatic index. f(k,g) represents the minimum possible number of vertices in a critical graph of maximum degree k and girth g. We shall prove that 23 less than or equal to f(3, 7) less than or equal to 25.
引用
收藏
页码:97 / 152
页数:56
相关论文
共 50 条
  • [41] Edge Chromatic 5-Critical Graphs of Order 15
    Kayathri, K.
    Devi, J. Sakila
    GRAPH ALGORITHMS, HIGH PERFORMANCE IMPLEMENTATIONS AND ITS APPLICATIONS (ICGHIA 2014), 2015, 47 : 332 - 336
  • [42] A lower bound on the order of the largest induced forest in planar graphs with high girth
    Dross, Francois
    Montassier, Mickael
    Pinlou, Alexandre
    DISCRETE APPLIED MATHEMATICS, 2016, 214 : 99 - 107
  • [43] A new lower bound on the domination number of a graph
    Majid Hajian
    Michael A. Henning
    Nader Jafari Rad
    Journal of Combinatorial Optimization, 2019, 38 : 721 - 738
  • [44] A new lower bound on the domination number of a graph
    Hajian, Majid
    Henning, Michael A.
    Rad, Nader Jafari
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2019, 38 (03) : 721 - 738
  • [45] A new lower bound for the chromatic number of general Kneser hypergraphs
    Sani, Roya Abyazi
    Alishahi, Meysam
    EUROPEAN JOURNAL OF COMBINATORICS, 2018, 71 : 229 - 245
  • [46] An improved upper bound on the adjacent vertex distinguishing edge chromatic number of a simple graph
    Wang, Tao
    Li, Deming
    ARS COMBINATORIA, 2013, 110 : 421 - 433
  • [47] A Lower Bound for the t-Tone Chromatic Number of a Graph in Terms of Wiener Index
    Pan, Jun-Jie
    Tsai, Cheng-Hsiu
    GRAPHS AND COMBINATORICS, 2018, 34 (01) : 159 - 162
  • [48] New upper bound for the chromatic number of a random subgraph of a distance graph
    A. S. Gusev
    Mathematical Notes, 2015, 97 : 326 - 332
  • [49] A Lower Bound for the t-Tone Chromatic Number of a Graph in Terms of Wiener Index
    Jun-Jie Pan
    Cheng-Hsiu Tsai
    Graphs and Combinatorics, 2018, 34 : 159 - 162
  • [50] New upper bound for the chromatic number of a random subgraph of a distance graph
    Gusev, A. S.
    MATHEMATICAL NOTES, 2015, 97 (3-4) : 326 - 332