Further improvements in the calculation of Censored Quantile Regressions

被引:0
|
作者
Hosseinkouchack, Mehdi [1 ]
机构
[1] Goethe Univ Frankfurt, D-60323 Frankfurt, Germany
关键词
Censored quantile regression; Genetic algorithms; Threshold accepting; Simulated annealing; Global optimization; ALGORITHM; CONVERGENCE; MODEL;
D O I
10.1016/j.cam.2010.08.029
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Censored Quantile Regressions of Powell (1984, 1986) are very powerful inferencing tools in economics and engineering. As the calculation of censored quantile regressions involves minimizing a nonconvex and nondifferentiable function, global optimization techniques can be the only breakthroughs. The first implementation of a global optimization technique, namely Threshold Accepting of Fitzenberger and Winker (1998, 2007), is challenged by the Genetic Algorithm (GA) in this paper. The results show that the GA provides substantial improvements over Threshold Accepting for cases with randomly distributed censoring points. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:1429 / 1445
页数:17
相关论文
共 50 条
  • [21] Quantile Autoregression for Censored Data
    Choi, Seokwoo Jake
    Portnoy, Stephen
    JOURNAL OF TIME SERIES ANALYSIS, 2016, 37 (05) : 603 - 623
  • [22] Jackknife model averaging for quantile regressions
    Lu, Xun
    Su, Liangjun
    JOURNAL OF ECONOMETRICS, 2015, 188 (01) : 40 - 58
  • [23] Tests for structural break in quantile regressions
    Marilena Furno
    AStA Advances in Statistical Analysis, 2012, 96 : 493 - 515
  • [24] Functional Censored Quantile Regression
    Jiang, Fei
    Cheng, Qing
    Yin, Guosheng
    Shen, Haipeng
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2020, 115 (530) : 931 - 944
  • [25] QUANTILE CALCULUS AND CENSORED REGRESSION
    Huang, Yijian
    ANNALS OF STATISTICS, 2010, 38 (03): : 1607 - 1637
  • [26] Weighted censored quantile regression
    Vasudevan, Chithran
    Variyath, Asokan Mulayath
    Fan, Zhaozhi
    SURVEY METHODOLOGY, 2019, 45 (01) : 127 - 144
  • [27] Censored Quantile Regression Forest
    Li, Alexander Hanbo
    Bradic, Jelena
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 108, 2020, 108 : 2109 - 2118
  • [28] Assessing quantile prediction with censored quantile regression models
    Li, Ruosha
    Peng, Limin
    BIOMETRICS, 2017, 73 (02) : 517 - 528
  • [29] ITERATIVELY REWEIGHTED CONSTRAINED QUANTILE REGRESSIONS
    Amerise, Ilaria L.
    ADVANCES AND APPLICATIONS IN STATISTICS, 2016, 49 (06) : 417 - 441
  • [30] Tests for structural break in quantile regressions
    Furno, Marilena
    ASTA-ADVANCES IN STATISTICAL ANALYSIS, 2012, 96 (04) : 493 - 515