Fuzzy bases and the fuzzy dimension of fuzzy vector spaces

被引:3
|
作者
Shi, Fu-Gui [1 ]
Huang, Chun-E [2 ]
机构
[1] Beijing Inst Technol, Dept Math, Sch Sci, Beijing 100081, Peoples R China
[2] Tsinghua Univ, Dept Thermal Engn, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
Fuzzy vector space; fuzzy basis; fuzzy dimension; SET;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, new definitions of a fuzzy basis and a fuzzy dimension for a fuzzy vector space are presented. A fuzzy basis for a fuzzy vector space (E, mu) is a fuzzy set beta on E. The cardinality of a fuzzy basis beta is called the fuzzy dimension of (E, mu). The fuzzy dimension of a finite dimensional fuzzy vector space is a fuzzy natural number. For a fuzzy vector space, any two fuzzy bases have the same cardinality. If (E) over tilde (1) and (E) over tilde (2) are two fuzzy vector spaces, then dim ((E) over tilde (1) + (E) over tilde (2)) + dim ((E) over tilde (1) boolean AND (E) over tilde (2)) = dim((E) over tilde (1)) + dim((E) over tilde (2)) and dim((ker) over tildef) + dim((im) over tildef) = dim((E) over tilde) hold without any restricted conditions
引用
收藏
页码:303 / 310
页数:8
相关论文
共 50 条
  • [31] The fuzzy topological spaces on a fuzzy space
    Dib, KA
    FUZZY SETS AND SYSTEMS, 1999, 108 (01) : 103 - 110
  • [32] Smooth fuzzy topology on fuzzy spaces
    Dib, KA
    Alghamdi, M
    Alhmadi, A
    PROCEEDINGS OF THE FIFTH JOINT CONFERENCE ON INFORMATION SCIENCES, VOLS 1 AND 2, 2000, : 88 - 90
  • [33] Fuzzy objects in spaces with fuzzy partitions
    Jiří Močkoř
    Michal Holčapek
    Soft Computing, 2017, 21 : 7269 - 7284
  • [34] Spaces with fuzzy partitions and fuzzy transform
    Mockor, Jiri
    SOFT COMPUTING, 2017, 21 (13) : 3479 - 3492
  • [35] Spaces with fuzzy partitions and fuzzy transform
    Jiří Močkoř
    Soft Computing, 2017, 21 : 3479 - 3492
  • [36] Fuzzy objects in spaces with fuzzy partitions
    Mockor, Jiri
    Holcapek, Michal
    SOFT COMPUTING, 2017, 21 (24) : 7269 - 7284
  • [37] Fuzzy Chu spaces and fuzzy topologies
    Srivastava, AK
    Tiwari, SP
    INTERNATIONAL JOURNAL OF UNCERTAINTY FUZZINESS AND KNOWLEDGE-BASED SYSTEMS, 2004, 12 (02) : 245 - 253
  • [38] Fuzzy φ-pseudometrics and Fuzzy φ-pseudometric Spaces
    Sostak, Alexander
    Bets, Raivis
    ADVANCES IN FUZZY LOGIC AND TECHNOLOGY 2017, VOL 3, 2018, 643 : 328 - 340
  • [39] ON FUZZY σ-ALGEBRAS AND FUZZY MEASURABLE SPACES
    王戈平
    A Monthly Journal of Science, 1982, (08) : 818 - 821
  • [40] Axioms for fuzzy bases of Hsueh fuzzy matroids
    Li, Xiaonan
    Yi, Huangjian
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2015, 29 (05) : 1995 - 2001