Chirp-free bright optical solitons and conservation laws for complex Ginzburg-Landau equation with three nonlinear forms

被引:52
|
作者
Biswas, Anjan [1 ,2 ]
机构
[1] Alabama A&M Univ, Dept Phys Chem & Math, Normal, AL 35762 USA
[2] Tshwane Univ Technol, Dept Math & Stat, ZA-0008 Pretoria, South Africa
来源
OPTIK | 2018年 / 174卷
关键词
Solitons; Traveling waves; Semi-inverse variation;
D O I
10.1016/j.ijleo.2018.08.063
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
This paper obtains chirp-free bright optical soliton solutions to the complex Ginzburg-Landau equation by traveling wave hypothesis and semi-inverse variational principle. Three forms of nonlinearity are associated with the model. They are quadratic-cubic form, parabolic law and dual-power law. The corresponding conservation laws are also included.
引用
收藏
页码:207 / 215
页数:9
相关论文
共 50 条
  • [21] Dissipative solitons for generalizations of the cubic complex Ginzburg-Landau equation
    Carvalho, M., I
    Facao, M.
    PHYSICAL REVIEW E, 2019, 100 (03)
  • [22] Plain and oscillatory solitons of the cubic complex Ginzburg-Landau equation with nonlinear gradient terms
    Facao, M.
    Carvalho, M. I.
    PHYSICAL REVIEW E, 2017, 96 (04)
  • [24] Chirped dissipative solitons of the complex cubic-quintic nonlinear Ginzburg-Landau equation
    Kalashnikov, V. L.
    PHYSICAL REVIEW E, 2009, 80 (04):
  • [25] Optical solitons to the Ginzburg-Landau equation including the parabolic nonlinearity
    Hosseini, K.
    Mirzazadeh, M.
    Akinyemi, L.
    Baleanu, D.
    Salahshour, S.
    OPTICAL AND QUANTUM ELECTRONICS, 2022, 54 (10)
  • [26] FROM DARK SOLITONS IN THE DEFOCUSING NONLINEAR SCHRODINGER TO HOLES IN THE COMPLEX GINZBURG-LANDAU EQUATION
    STILLER, O
    POPP, S
    KRAMER, L
    PHYSICA D, 1995, 84 (3-4): : 424 - 436
  • [27] Optical Solitons with the Complex Ginzburg-Landau Equation with Kudryashov's Law of Refractive Index
    Arnous, Ahmed H.
    Moraru, Luminita
    MATHEMATICS, 2022, 10 (19)
  • [28] Dark-singular combo optical solitons with fractional complex Ginzburg-Landau equation
    Abdou, M. A.
    Soliman, A. A.
    Biswas, Anjan
    Ekici, Mehmet
    Zhou, Qin
    Moshokoa, Seithuti P.
    OPTIK, 2018, 171 : 463 - 467
  • [29] New computational optical solitons for generalized complex Ginzburg-Landau equation by collective variables
    Raza, Nauman
    Jannat, Nahal
    Gomez-Aguilar, J. F.
    Perez-Careta, Eduardo
    MODERN PHYSICS LETTERS B, 2022, 36 (28N29):
  • [30] Optical solitons with differential group delay for complex Ginzburg-Landau equation having Kerr and parabolic laws of refractive index
    Yildirim, Yakup
    Biswas, Anjan
    Khan, Salam
    Alshomrani, Ali Saleh
    Belic, Milivoj R.
    OPTIK, 2020, 202