MAINT.Data: Modelling and Analysing Interval Data in R

被引:0
|
作者
Duarte Silva, A. Pedro [1 ,2 ]
Brito, Paula [3 ,4 ]
Filzmoser, Peter [5 ]
Dias, Jose G. [6 ]
机构
[1] Univ Catolica Portuguesa, Catolica Porto Business Sch, Rua Diogo Botelho 1327, P-4169005 Porto, Portugal
[2] Univ Catolica Portuguesa, CEGE, Rua Diogo Botelho 1327, P-4169005 Porto, Portugal
[3] Univ Porto, Fac Econ, Rua Dr Roberto Frias, P-4200464 Porto, Portugal
[4] LIAAD INESC TEC, Rua Dr Roberto Frias, P-4200464 Porto, Portugal
[5] TU Wien, Inst Stat & Math Methods Econ, Wiedner Hauptstr 8-10, A-1040 Vienna, Austria
[6] Inst Univ Lisboa ISCTE IUL, Business Res Unit BRU IUL, Av Forcas Armadas, P-1648026 Lisbon, Portugal
来源
R JOURNAL | 2021年 / 13卷 / 02期
关键词
DISCRIMINANT-ANALYSIS; LIKELIHOOD ESTIMATORS; MAXIMUM-LIKELIHOOD; REGRESSION-MODELS;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present the CRAN R package MAINT.Data for the modelling and analysis of multivariate interval data, i.e., where units are described by variables whose values are intervals of IR, representing intrinsic variability. Parametric inference methodologies based on probabilistic models for interval variables have been developed, where each interval is represented by its midpoint and log-range, for which multivariate Normal and Skew-Normal distributions are assumed. The intrinsic nature of the interval variables leads to special structures of the variance-covariance matrix, which are represented by four different possible configurations. MAINT.Data implements the proposed methodologies in the S4 object system, introducing a specific data class for representing interval data. It includes functions and methods for modelling and analysing interval data, in particular maximum likelihood estimation, statistical tests for the different configurations, (M)ANOVA and Discriminant Analysis. For the Gaussian model, Model-based Clustering, robust estimation, outlier detection and Robust Discriminant Analysis are also available.
引用
收藏
页码:336 / 364
页数:29
相关论文
共 50 条
  • [11] Modelling tooth emergence data based on multivariate interval-censored data
    Bogaerts, K
    Leroy, R
    Lesaffre, E
    Declerck, D
    STATISTICS IN MEDICINE, 2002, 21 (24) : 3775 - 3787
  • [12] opm: an R package for analysing OmniLog® phenotype microarray data
    Vaas, Lea A. I.
    Sikorski, Johannes
    Hofner, Benjamin
    Fiebig, Anne
    Buddruhs, Nora
    Klenk, Hans-Peter
    Goeker, Markus
    BIOINFORMATICS, 2013, 29 (14) : 1823 - 1824
  • [13] Analysing Data with the R Programming Language to Control Machine Operation
    Kesek, Marek
    INZYNIERIA MINERALNA-JOURNAL OF THE POLISH MINERAL ENGINEERING SOCIETY, 2019, (01): : 231 - 235
  • [14] Conditional intensity: A powerful tool for modelling and analysing point process data
    Diggle, Peter J.
    AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2021, 63 (01) : 83 - 92
  • [15] A Bayesian Modelling Approach with Balancing Informative Prior for Analysing Imbalanced Data
    Klein, Kerenaftali
    Hennig, Stefanie
    Paul, Sanjoy Ketan
    PLOS ONE, 2016, 11 (04):
  • [16] Embedded Cluster Modelling - A novel method for analysing embedded data sets
    Worth, AP
    Cronin, MTD
    QUANTITATIVE STRUCTURE-ACTIVITY RELATIONSHIPS, 1999, 18 (03): : 229 - 235
  • [17] Analysing saturable antibody binding based on serum data and pharmacokinetic modelling
    Kletting, Peter
    Kiryakos, Hady
    Reske, Sven N.
    Glatting, Gerhard
    PHYSICS IN MEDICINE AND BIOLOGY, 2011, 56 (01): : 73 - 86
  • [18] Analysing, completing, and generating influent data for WWTP modelling: A critical review
    Martin, Cristina
    Vanrolleghem, Peter A.
    ENVIRONMENTAL MODELLING & SOFTWARE, 2014, 60 : 188 - 201
  • [19] icenReg: Regression Models for Interval Censored Data in R
    Anderson-Bergman, Clifford
    JOURNAL OF STATISTICAL SOFTWARE, 2017, 81 (12): : 1 - 23
  • [20] good : An R package for modelling count data
    Agis, David
    Tur, Jordi
    Morina, David
    Puig, Pedro
    Fernandez-Fontelo, Amanda
    METHODS IN ECOLOGY AND EVOLUTION, 2024, 15 (12): : 2192 - 2197