Theorems on Analogous of Ramanujan's Remarkable Product of Theta-Function and Their Explicit Evaluations

被引:0
|
作者
Dharmendra, B. N. [1 ]
Kumar, S. Vasanth [2 ]
机构
[1] Maharanis Sci Coll Women, Postgrad Dept Math, Mysuru 570005, India
[2] Bharathiar Univ, Dept Math, Coimbatore 641046, Tamil Nadu, India
关键词
Class invariant; Modular equation; Theta-function; Cubic continued fraction; CONTINUED-FRACTION;
D O I
10.5269/bspm.43200
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we define E-m,E-n for any positive real numbers m and n involving Ramanujan's product of theta-functions psi(-q) and f(q), which is analogous to Ramanujan's remarkable product of thetafunctions and establish its several properties by Ramanujan. We establish general theorems for the explicit evaluations of E-m,E-n and its explicit values.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] New Theta-Function Identities of Level 6 in the Spirit of Ramanujan
    Srivatsa Kumar, B. R.
    Rajanna, K. R.
    Narendra, R.
    MATHEMATICAL NOTES, 2019, 106 (5-6) : 922 - 929
  • [22] On Ramanujan's cubic continued fraction and explicit evaluations of theta-functions
    Adiga, C
    Kim, T
    Naika, MSM
    Madhusudhan, HS
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2004, 35 (09): : 1047 - 1062
  • [23] New Theta-Function Identities of Level 6 in the Spirit of Ramanujan
    B. R. Srivatsa Kumar
    K. R. Rajanna
    R. Narendra
    Mathematical Notes, 2019, 106 : 922 - 929
  • [24] Some general theorems on the explicit evaluations of Ramanujan's cubic continued fraction
    Department of Mathematical Sciences, Tezpur University, Assam, Napaam 784 028, India
    J. Comput. Appl. Math., 1-2 (37-51):
  • [25] Some general theorems on the explicit evaluations of Ramanujan's cubic continued fraction
    Baruah, ND
    Saikia, N
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2003, 160 (1-2) : 37 - 51
  • [27] Complete theory of Riemann's theta-function
    Christoffel, EB
    MATHEMATISCHE ANNALEN, 1901, 54 : 347 - 399
  • [28] A Family of Theta-Function Identities Related to Jacobi’s Triple-Product Identity
    H. M. Srivastava
    M. P. Chaudhary
    S. Chaudhary
    Russian Journal of Mathematical Physics, 2020, 27 : 139 - 144
  • [29] Some Theta-Function Identities Related to Jacobi's Triple-Product Identity
    Srivastava, H. M.
    Chaudhary, M. P.
    Chaudhary, Sangeeta
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2018, 11 (01): : 1 - 9
  • [30] Jacobi's Triple-Product Identity and an Associated Family of Theta-Function Identities
    Srivastava, H. M.
    Chaudhary, M. P.
    Chaudhary, S.
    Salilew, G. A.
    MATHEMATICAL NOTES, 2022, 112 (5-6) : 755 - 762