k-restricted edge connectivity in (p+1)-clique-free graphs

被引:4
|
作者
Wang, Shiying [1 ,2 ]
Zhang, Lei [1 ]
Lin, Shangwei [1 ]
机构
[1] Shanxi Univ, Sch Math Sci, Taiyuan 030006, Shanxi, Peoples R China
[2] Henan Normal Univ, Coll Math & Informat Sci, Xinxiang 453007, Henan, Peoples R China
基金
国家教育部博士点专项基金资助; 中国国家自然科学基金;
关键词
Interconnection network; Graph; Restricted edge connectivity; Clique; SUFFICIENT CONDITIONS; DIAMETER; 2; GIRTH;
D O I
10.1016/j.dam.2014.10.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a graph with vertex set V(G) and edge set E(G). An edge subset S c E(G) is called a k-restricted edge cut if G - S is not connected and every component of G - S has at least k vertices. The k-restricted edge connectivity of a connected graph G, denoted by 4(G), is defined as the cardinality of a minimum k-restricted edge cut. Let [X, (X) over bar] denote the set of edges between a vertex set X subset of V (G) and its complement (X) over bar = V(G)\X. A vertex set X subset of V (G) is called a lambda(k)-fragment if [X, (X) over bar] is a minimum k-restricted edge cut of G. Let xi(k)(G) = min{vertical bar[X, (X) over bar]vertical bar : vertical bar X vertical bar = k, G[X] is connected}. In this work, we give a lower bound on the cardinality of lambda(k)-fragments of a graph G satisfying lambda(k)(G) < xi(k)(G) and containing no (p + 1)-cliques. As a consequence of this result, we show a sufficient condition for a graph G with lambda(k)(G) = xi(k)(G). (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:255 / 259
页数:5
相关论文
共 50 条
  • [41] On a kind of restricted edge connectivity of graphs
    Meng, JX
    Ji, YH
    DISCRETE APPLIED MATHEMATICS, 2002, 117 (1-3) : 183 - 193
  • [42] On the Edge-Connectivity and Restricted Edge-Connectivity of Optimal 1-Planar Graphs
    Licheng Zhang
    Yuanqiu Huang
    Guiping Wang
    Bulletin of the Malaysian Mathematical Sciences Society, 2024, 47
  • [43] On the Edge-Connectivity and Restricted Edge-Connectivity of Optimal 1-Planar Graphs
    Zhang, Licheng
    Huang, Yuanqiu
    Wang, Guiping
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2024, 47 (01)
  • [44] The edge-connectivity and restricted edge-connectivity of a product of graphs
    Balbuena, C.
    Cera, M.
    Dianez, A.
    Garcia-Vazquez, P.
    Marcote, X.
    DISCRETE APPLIED MATHEMATICS, 2007, 155 (18) : 2444 - 2455
  • [45] Edge clique partition in (k, l)-graphs
    Jones, Atila A.
    Protti, Fabio
    Del-Vecchio, Renata R.
    DISCRETE APPLIED MATHEMATICS, 2022, 306 : 89 - 97
  • [46] An Anti-Ramsey Theorem of k-Restricted Edge-Cuts
    Gonzalez-Moreno, Diego
    Guevara, Mucuy-Kak
    Montellano-Ballesteros, Juan Jose
    GRAPHS AND COMBINATORICS, 2022, 38 (04)
  • [47] On restricted edge connectivity of strong product graphs
    Ou, Jianping
    Zhao, Weisheng
    ARS COMBINATORIA, 2015, 123 : 55 - 64
  • [48] Local-restricted-edge-connectivity of graphs
    Liu, Juan
    Zhang, Xindong
    Meng, Jixiang
    ARS COMBINATORIA, 2014, 113 : 97 - 104
  • [49] Super Restricted Edge Connectivity of Regular Graphs
    Ou Jianping
    Fuji Zhang
    Graphs and Combinatorics, 2005, 21 : 459 - 467
  • [50] On restricted edge connectivity of Cartesian product graphs
    Qin, Yingying
    Ou, Jianping
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2013, 37 (07): : 65 - 70