Multilinear Maps from Obfuscation

被引:14
|
作者
Albrecht, Martin R. [1 ]
Farshim, Pooya [2 ]
Hofheinz, Dennis [3 ]
Larraia, Enrique [1 ]
Paterson, Kenneth G. [1 ]
机构
[1] Univ London, Egham, Surrey, England
[2] Queens Univ Belfast, Belfast, Antrim, North Ireland
[3] Karlsruhe Inst Technol, D-76021 Karlsruhe, Germany
来源
基金
英国工程与自然科学研究理事会;
关键词
Multilinear map; Indistinguishability obfuscation; Homomorphic encryption; Decisional Diffie-Hellman; Groth-Sahai proofs;
D O I
10.1007/978-3-662-49096-9_19
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We provide constructions of multilinear groups equipped with natural hard problems from indistinguishability obfuscation, homomorphic encryption, and NIZKs. This complements known results on the constructions of indistinguishability obfuscators from multilinear maps in the reverse direction. We provide two distinct, but closely related constructions and show that multilinear analogues of the DDH assumption hold for them. Our first construction is symmetric and comes with a kappa-linear map e : G(kappa) -> G(T) for prime-order groups G and G(T). To establish the hardness of the kappa-linear DDH problem, we rely on the existence of a base group for which the (kappa - 1)-strong DDH assumption holds. Our second construction is for the asymmetric setting, where e : G(1) x ... x G(kappa) -> G(T) for a collection of kappa + 1 prime-order groups G(i) and G(T), and relies only on the standard DDH assumption in its base group. In both constructions the linearity kappa can be set to any arbitrary but a priori fixed polynomial value in the security parameter. We rely on a number of powerful tools in our constructions: (probabilistic) indistinguishability obfuscation, dual-mode NIZK proof systems (with perfect soundness, witness indistinguishability and zero knowledge), and additively homomorphic encryption for the group Z(N)(+). At a high level, we enable "bootstrapping" multilinear assumptions from their simpler counterparts in standard cryptographic groups, and show the equivalence of IO and multilinear maps under the existence of the aforementioned primitives.
引用
收藏
页码:446 / 473
页数:28
相关论文
共 50 条
  • [31] Cryptanalysis of FRS obfuscation based on the CLT13 multilinear map
    Kim, Jiseung
    Lee, Changmin
    IET INFORMATION SECURITY, 2022, 16 (03) : 208 - 219
  • [32] Some remarks on multilinear maps and interpolation
    Loukas Grafakos
    Nigel Kalton
    Mathematische Annalen, 2001, 319 : 151 - 180
  • [33] Extension of multilinear maps defined on subspaces
    Maite Fernández-Unzueta
    Israel Journal of Mathematics, 2012, 188 : 301 - 322
  • [34] New Multilinear Maps Over the Integers
    Coron, Jean-Sebastien
    Lepoint, Tancrede
    Tibouchi, Mehdi
    ADVANCES IN CRYPTOLOGY, PT I, 2015, 9215 : 267 - 286
  • [35] AUTOMORPHISM-GROUPS OF MULTILINEAR MAPS
    SUZUKI, H
    OSAKA JOURNAL OF MATHEMATICS, 1983, 20 (03) : 659 - 673
  • [36] Tensor network complexity of multilinear maps
    Austrin, Per
    Kaski, Petteri
    Kubjas, Kaie
    Theory of Computing, 2022, 18
  • [37] Practical Multilinear Maps over the Integers
    Coron, Jean-Sebastien
    Lepoint, Tancrede
    Tibouchi, Mehdi
    ADVANCES IN CRYPTOLOGY - CRYPTO 2013, PT I, 2013, 8042 : 476 - 493
  • [38] On non-singular multilinear maps
    Sun, Xiaosong
    Du, Xiankun
    Liu, Dayan
    LINEAR & MULTILINEAR ALGEBRA, 2010, 58 (03): : 297 - 303
  • [39] Some remarks on multilinear maps and interpolation
    Grafakos, L
    Kalton, N
    MATHEMATISCHE ANNALEN, 2001, 319 (01) : 151 - 180
  • [40] EXTENSION OF MULTILINEAR MAPS DEFINED ON SUBSPACES
    Fernandez-Unzueta, Maite
    ISRAEL JOURNAL OF MATHEMATICS, 2012, 188 (01) : 301 - 322