Data-driven ship berthing forecasting for cold ironing in maritime transportation

被引:23
|
作者
Abu Bakar, Nur Najihah [1 ,2 ]
Bazmohammadi, Najmeh [1 ]
Cimen, Halil [3 ]
Uyanik, Tayfun [4 ]
Vasquez, Juan C. [1 ]
Guerrero, Josep M. [1 ]
机构
[1] Aalborg Univ, Ctr Res Microgrids CROM, AAU Energy, DK-9220 Aalborg, Denmark
[2] Univ Malaysia Perlis, Fac Elect Engn Technol, Kampus Pauh Putra, Arau 02600, Arau, Malaysia
[3] Konya Tech Univ, Dept Elect Elect Engn, Konya, Turkey
[4] Istanbul Tech Univ, Maritime Fac, TR-34940 Istanbul, Turkey
关键词
Cold ironing; Data; -driven; Electrification; Emission; Forecasting; Ship transportation;
D O I
10.1016/j.apenergy.2022.119947
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Cold ironing (CI) is an electrification alternative in the maritime sector used to reduce shipborne emissions by switching from fuel to electricity when a ship docks at a port. During the ship's berthing mode of operation, accurately estimating the berthing duration could assist the port operator to manage the berth allocation and energy scheduling optimally. However, the involvement of multiple input parameters with a large dataset re-quires a suitable handling method. Thus, this paper proposed a data-driven approach for ship berthing fore-casting of cold ironing with various models such as artificial neural networks, multiple linear regression, random forest, decision tree, and extreme gradient boosting. Meanwhile, RMSE and MAE are two main indicators applied to assess forecasting accuracy. The simulation-based result shows that the artificial neural network outperforms all other models with the lowest error performance of RMSE (3.1343) and MAE (0.2548), suggesting its capa-bility to handle nonlinearities in complex forecasting problems of port activity. The high accuracy of forecasting output in this study, which is berthing duration contributes to close estimation of two info: 1) CI power con-sumption and 2) departure time of the ship. This information is vital to the port operator to be used in the energy management system (EMS) as well as in the berth allocation problem (BAP).
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Accident Data-Driven Consequence Analysis in Maritime Industries
    Shi, Jiahui
    Liu, Zhengjiang
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2025, 13 (01)
  • [22] FREAK WAVE FORECASTING: A DATA-DRIVEN APPROACH
    Breunung, Thomas
    Balachandran, Balakumar
    PROCEEDINGS OF ASME 2022 41ST INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE & ARCTIC ENGINEERING, OMAE2022, VOL 2, 2022,
  • [23] DATA-DRIVEN TIME PARALLELISM VIA FORECASTING
    Carlberg, Kevin
    Brencher, Lukas
    Haasdonk, Bernard
    Barth, Andrea
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2019, 41 (03): : B466 - B496
  • [24] Data-Driven Adaptive Regularized Risk Forecasting
    Liang, You
    Thavaneswaran, Aerambamoorthy
    Zhu, Zimo
    Thulasiram, Ruppa K.
    Hoque, Md Erfanul
    2020 IEEE 44TH ANNUAL COMPUTERS, SOFTWARE, AND APPLICATIONS CONFERENCE (COMPSAC 2020), 2020, : 1296 - 1301
  • [25] Data-driven Ship Domain for Open Water Navigation
    Ozturk, Ulku
    JOURNAL OF ETA MARITIME SCIENCE, 2022, 10 (01) : 39 - 46
  • [26] A Data-Driven Solar Irradiance Forecasting Model with Minimum Data
    Lyu, Cheng
    Basumallik, Sagnik
    Eftekharnejad, Sara
    Xu, Chongfang
    2021 IEEE TEXAS POWER AND ENERGY CONFERENCE (TPEC), 2021, : 307 - 312
  • [27] WeatherBench: A Benchmark Data Set for Data-Driven Weather Forecasting
    Rasp, Stephan
    Dueben, Peter D.
    Scher, Sebastian
    Weyn, Jonathan A.
    Mouatadid, Soukayna
    Thuerey, Nils
    JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, 2020, 12 (11)
  • [28] Data-driven cold starting of good reservoirs
    Grigoryeva, Lyudmila
    Hamzi, Boumediene
    Kemeth, Felix P.
    Kevrekidis, Yannis
    Manjunath, G.
    Ortega, Juan-Pablo
    Steynberg, Matthys J.
    PHYSICA D-NONLINEAR PHENOMENA, 2024, 469
  • [29] Preface: Data-driven operations research in transportation and logistics
    Zhang, Guoqing
    Li, Xiang
    Nishi, Tatsushi
    ANNALS OF OPERATIONS RESEARCH, 2022, 309 (02) : 453 - 456
  • [30] Preface: Data-driven operations research in transportation and logistics
    Guoqing Zhang
    Xiang Li
    Tatsushi Nishi
    Annals of Operations Research, 2022, 309 : 453 - 456