LiI doping of mixed-cation mixed-halide perovskite solar cells: Defect passivation, controlled crystallization and transient ionic response

被引:6
|
作者
Tabi, G. D. [1 ]
Pham, H. T. [3 ,4 ,5 ]
Zhan, H. [1 ]
Walter, D. [1 ]
Mayon, A. O. [1 ]
Peng, J. [1 ]
Duong, T. [1 ]
Shehata, Mohammed M. [1 ]
Shen, H. [1 ]
Duan, L. [1 ]
Mozaffari, N. [1 ]
Li, L. [2 ]
Mahmud, M. A. [1 ,6 ,7 ]
Nguyen, H. T. [1 ]
Weber, K. [1 ]
Catchpole, K. R. [1 ]
White, T. P. [1 ]
机构
[1] Australian Natl Univ, Sch Engn, Canberra, ACT 2601, Australia
[2] Australian Natl Univ, Dept Elect Mat Engn, Australian Natl Fabricat Facil ANFF, Canberra, ACT 2601, Australia
[3] Australian Natl Univ, Res Sch Phys, Dept Elect Mat Engn, Canberra, ACT 2601, Australia
[4] Monash Univ, Monash Ctr Electron Microscopy, Clayton, Vic 3800, Australia
[5] Monash Univ, Dept Mat Sci & Engn, Clayton, Vic 3800, Australia
[6] Univ Sydney, Univ Sydney Nano Inst Sydney Nano, Sydney, NSW 2006, Australia
[7] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia
基金
澳大利亚研究理事会;
关键词
Defect passivation; Crystallization; Recombination; Transient response; Hysteresis; ion migration; Mixed -cation mixed -halide perovskite; N-I-P; HIGH-EFFICIENCY; HYSTERESIS; PERFORMANCE; POTASSIUM; MIGRATION; IODIDE; FILMS;
D O I
10.1016/j.mtphys.2022.100822
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We investigate lithium iodide (LiI) doping of mixed-cation mixed-halide (MCMH) perovskites as a method to improve film morphology and optoelectronic properties, reduce defect-related recombination losses and limit ion migration. The optimized Li-doped devices achieved 21.5% power conversion efficiency (PCE) compared to 20.4% for undoped control devices. Furthermore, optimized Li-doped devices show minimized current-voltage hysteresis across a wide range of scan rates compared to control devices, which displayed significant scan-rate dependent hysteresis. We show, using a combination of experimental analysis and numerical device simulations, that the improved device performance and transient response at optimum doping concentration are consistent with reduced non-radiative recombination in the perovskite. However, increasing the LiI dopants beyond the optimum concentration alters the ionic properties of the perovskite absorber and changes the transient response. We also find that LiI addition results in a downward shift of the valence band and a corresponding transition from a weakly n-type to p-type perovskite material. These findings reveal the beneficial role of LiI dopant at low concentrations can improve shelf-life and minimize recombination-active defects, which are favourable for designing high-performance and stable mixed-cation mixed-halide perovskite devices.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Efficient Mixed-Cation Mixed-Halide Perovskite Solar Cells by All-Vacuum Sequential Deposition Using Metal Oxide Electron Transport Layer
    Kam, Matthew
    Zhu, Yiyi
    Zhang, Daquan
    Gu, Leilei
    Chen, Jiaqi
    Fan, Zhiyong
    SOLAR RRL, 2019, 3 (07)
  • [32] An amino-phthalocyanine additive enhances the efficiency of perovskite solar cells through defect passivation in mixed-halide films
    Lai, Kuan-Wen
    Hanmandlu, Chintam
    Chang, Chien Cheng
    Chu, Chih-Wei
    ORGANIC ELECTRONICS, 2022, 108
  • [33] Crystallization Kinetics and Morphology Control of Formamidinium-Cesium Mixed-Cation Lead Mixed-Halide Perovskite via Tunability of the Colloidal Precursor Solution
    McMeekin, David P.
    Wang, Zhiping
    Rehman, Waqaas
    Pulvirenti, Federico
    Patel, Jay B.
    Noel, Nakita K.
    Johnston, Michael B.
    Marder, Seth R.
    Herz, Laura M.
    Snaith, Henry J.
    ADVANCED MATERIALS, 2017, 29 (29)
  • [34] Reducing Surface Recombination Velocity of Methylammonium-Free Mixed-Cation Mixed-Halide Perovskites via Surface Passivation
    Jariwala, Sarthak
    Burke, Sven
    Dunfield, Sean
    Shallcross, R. Clayton
    Taddei, Margherita
    Wang, Jian
    Eperon, Giles E.
    Armstrong, Neal R.
    Berry, Joseph J.
    Ginger, David S.
    CHEMISTRY OF MATERIALS, 2021, 33 (13) : 5035 - 5044
  • [35] Mixed-Halide Inorganic Perovskite Solar Cells: Opportunities and Challenges
    Yang, Ming
    Wang, Huaxin
    Cai, Wensi
    Zang, Zhigang
    ADVANCED OPTICAL MATERIALS, 2023, 11 (20):
  • [36] Mixed-Halide Inorganic Perovskite Solar Cells: Opportunities and Challenges
    Yang, Ming
    Wang, Huaxin
    Cai, Wensi
    Zang, Zhigang
    ADVANCED OPTICAL MATERIALS, 2023,
  • [37] Quadruple-Cation Wide-Bandgap Mixed-Halide Tin Perovskite Solar Cells
    Kuan, Chun-Hsiao
    Chen, Yu-Cheng
    Narra, Sudhakar
    Chang, Chun-Fu
    Tsai, Yi-Wei
    Lin, Jhih-Min
    Chen, Guan-Ruei
    Diau, Eric Wei-Guang
    ACS ENERGY LETTERS, 2024, 9 (05): : 2351 - 2357
  • [38] Efficient Liquid-Solid Coregulation Engineering in Mixed-Cation Lead Mixed-Halide Perovskite for Photovoltaic Performance Improvement
    Liu, Zhen
    Li, Hui
    Chang, Bohong
    Wang, Lian
    Wu, Yutong
    Pan, Lu
    Yin, Longwei
    SOLAR RRL, 2023, 7 (14)
  • [39] Numerical simulation of a mixed-halide perovskite solar cell using doping gradient
    Ritu, Ramesh
    Gagandeep, Fakir
    Kumar, Ramesh
    Chand, Fakir
    JOURNAL OF COMPUTATIONAL ELECTRONICS, 2023, 22 (05) : 1532 - 1540
  • [40] Numerical simulation of a mixed-halide perovskite solar cell using doping gradient
    Ramesh Ritu
    Fakir Gagandeep
    Journal of Computational Electronics, 2023, 22 : 1532 - 1540