LiI doping of mixed-cation mixed-halide perovskite solar cells: Defect passivation, controlled crystallization and transient ionic response

被引:6
|
作者
Tabi, G. D. [1 ]
Pham, H. T. [3 ,4 ,5 ]
Zhan, H. [1 ]
Walter, D. [1 ]
Mayon, A. O. [1 ]
Peng, J. [1 ]
Duong, T. [1 ]
Shehata, Mohammed M. [1 ]
Shen, H. [1 ]
Duan, L. [1 ]
Mozaffari, N. [1 ]
Li, L. [2 ]
Mahmud, M. A. [1 ,6 ,7 ]
Nguyen, H. T. [1 ]
Weber, K. [1 ]
Catchpole, K. R. [1 ]
White, T. P. [1 ]
机构
[1] Australian Natl Univ, Sch Engn, Canberra, ACT 2601, Australia
[2] Australian Natl Univ, Dept Elect Mat Engn, Australian Natl Fabricat Facil ANFF, Canberra, ACT 2601, Australia
[3] Australian Natl Univ, Res Sch Phys, Dept Elect Mat Engn, Canberra, ACT 2601, Australia
[4] Monash Univ, Monash Ctr Electron Microscopy, Clayton, Vic 3800, Australia
[5] Monash Univ, Dept Mat Sci & Engn, Clayton, Vic 3800, Australia
[6] Univ Sydney, Univ Sydney Nano Inst Sydney Nano, Sydney, NSW 2006, Australia
[7] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia
基金
澳大利亚研究理事会;
关键词
Defect passivation; Crystallization; Recombination; Transient response; Hysteresis; ion migration; Mixed -cation mixed -halide perovskite; N-I-P; HIGH-EFFICIENCY; HYSTERESIS; PERFORMANCE; POTASSIUM; MIGRATION; IODIDE; FILMS;
D O I
10.1016/j.mtphys.2022.100822
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We investigate lithium iodide (LiI) doping of mixed-cation mixed-halide (MCMH) perovskites as a method to improve film morphology and optoelectronic properties, reduce defect-related recombination losses and limit ion migration. The optimized Li-doped devices achieved 21.5% power conversion efficiency (PCE) compared to 20.4% for undoped control devices. Furthermore, optimized Li-doped devices show minimized current-voltage hysteresis across a wide range of scan rates compared to control devices, which displayed significant scan-rate dependent hysteresis. We show, using a combination of experimental analysis and numerical device simulations, that the improved device performance and transient response at optimum doping concentration are consistent with reduced non-radiative recombination in the perovskite. However, increasing the LiI dopants beyond the optimum concentration alters the ionic properties of the perovskite absorber and changes the transient response. We also find that LiI addition results in a downward shift of the valence band and a corresponding transition from a weakly n-type to p-type perovskite material. These findings reveal the beneficial role of LiI dopant at low concentrations can improve shelf-life and minimize recombination-active defects, which are favourable for designing high-performance and stable mixed-cation mixed-halide perovskite devices.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Triggering the Passivation Effect of Potassium Doping in Mixed-Cation Mixed-Halide Perovskite by Light Illumination
    Zheng, Fei
    Chen, Weijian
    Bu, Tongle
    Ghiggino, Kenneth P.
    Huang, Fuzhi
    Cheng, Yibing
    Tapping, Patrick
    Kee, Tak W.
    Jia, Baohua
    Wen, Xiaoming
    ADVANCED ENERGY MATERIALS, 2019, 9 (24)
  • [2] Bulk recrystallization for efficient mixed-cation mixed-halide perovskite solar cells
    Lin, Liangyou
    Wang, Jacob Tse-Wei
    Jones, Timothy W.
    Grigore, Mihaela
    Cook, Andre
    deQuilettes, Dane W.
    Brenes, Roberto
    Duck, Benjamin C.
    Anderson, Kenrick F.
    Duffy, Noel W.
    Wenger, Bernard
    Bulovic, Vladimir
    Pu, Jian
    Li, Jian
    Chi, Bo
    Snaith, Henry J.
    Wilson, Gregory J.
    JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (44) : 25511 - 25520
  • [3] A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells
    McMeekin, David P.
    Sadoughi, Golnaz
    Rehman, Waqaas
    Eperon, Giles E.
    Saliba, Michael
    Hoerantner, Maximilian T.
    Haghighirad, Amir
    Sakai, Nobuya
    Korte, Lars
    Rech, Bernd
    Johnston, Michael B.
    Herz, Laura M.
    Snaith, Henry J.
    SCIENCE, 2016, 351 (6269) : 151 - 155
  • [4] Compact layer free mixed-cation lead mixed-halide perovskite solar cells
    Hu, Zhelu
    Xiang, Hengyang
    Sebag, Mathilde Schoenauer
    Billot, Laurent
    Aigouy, Lionel
    Chen, Zhuoying
    CHEMICAL COMMUNICATIONS, 2018, 54 (21) : 2623 - 2626
  • [5] Halide Remixing under Device Operation Imparts Stability on Mixed-Cation Mixed-Halide Perovskite Solar Cells
    Ruggeri, Edoardo
    Anaya, Miguel
    Galkowski, Krzysztof
    Abfalterer, Anna
    Chiang, Yu-Hsien
    Ji, Kangyu
    Andaji-Garmaroudi, Zahra
    Stranks, Samuel D.
    ADVANCED MATERIALS, 2022, 34 (36)
  • [6] Efficient Wide-Bandgap Mixed-Cation and Mixed-Halide Perovskite Solar Cells by Vacuum Deposition
    Gil-Escrig, Lidon
    Dreessen, Chris
    Palazon, Francisco
    Hawash, Zafer
    Moons, Ellen
    Albrecht, Steve
    Sessolo, Michele
    Bolink, Henk J.
    ACS ENERGY LETTERS, 2021, 6 (02) : 827 - 836
  • [7] Mixed-cation, mixed-halide perovskite ToF-SIMS spectra
    Taddei, Margherita
    Graham, Daniel J.
    SURFACE SCIENCE SPECTRA, 2024, 31 (01):
  • [8] Mixed 3D-2D Passivation Treatment for Mixed-Cation Lead Mixed-Halide Perovskite Solar Cells for Higher Efficiency and Better Stability
    Cho, Yongyoon
    Soufiani, Arman Mahboubi
    Yun, Jae Sung
    Kim, Jincheol
    Lee, Da Seul
    Seidel, Jan
    Deng, Xiaofan
    Green, Martin A.
    Huang, Shujuan
    Ho-Baillie, Anita W. Y.
    ADVANCED ENERGY MATERIALS, 2018, 8 (20)
  • [9] High-performance mixed-cation mixed-halide perovskite solar cells enabled by a facile intermediate engineering technique
    Mateen, Muhammad
    Arain, Zulqarnain
    Liu, Xuepeng
    Liu, Chen
    Yang, Yi
    Ding, Yong
    Ma, Shuang
    Ren, Yingke
    Wu, Yunzhao
    Tao, Ye
    Shi, Pengju
    Dai, Songyuan
    JOURNAL OF POWER SOURCES, 2020, 448
  • [10] Temperature behaviour of mixed-cation mixed-halide perovskite solar cells. Analysis of recombination mechanisms and ion migration
    Lopez-Gonzalez, Mari Carmen
    del Pozo, Gonzalo
    Arredondo, Belen
    Delgado, Silvia
    Martin-Martin, Diego
    Garcia-Pardo, Marina
    Romero, Beatriz
    ORGANIC ELECTRONICS, 2023, 120