Optimal multilevel randomized quasi-Monte-Carlo method for the stochastic drift-diffusion-Poisson system

被引:14
|
作者
Khodadadian, Amirreza [1 ]
Taghizadeh, Leila [1 ]
Heitzinger, Clemens [1 ,2 ]
机构
[1] Vienna Univ Technol TU Wien, Inst Anal & Sci Comp, Wiedner Hauptstr 8-10, A-1040 Vienna, Austria
[2] Arizona State Univ, Sch Math & Stat Sci, Tempe, AZ 85287 USA
基金
奥地利科学基金会;
关键词
Multilevel randomized quasi-Monte-Carlo; Multilevel Monte-Carlo; Randomized quasi-Monte-Carlo; Optimal numerical method; Stochastic partial differential equation; Field-effect transistor; MULTIVARIATE INTEGRATION; MULTIPLE INTEGRATION; WEIGHTED KOROBOV; PATH SIMULATION; LATTICE RULES; MOSFETS; GATE;
D O I
10.1016/j.cma.2017.10.015
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, an optimal multilevel randomized quasi-Monte-Carlo method to solve the stationary stochastic drift-diffusion-Poisson system is developed. We calculate the optimal values of the parameters of the numerical method such as the mesh sizes of the spatial discretization and the numbers of quasi-points in order to minimize the overall computational cost for solving this system of stochastic partial differential equations. This system has a number of applications in various fields, wherever charged particles move in a random environment. It is shown that the computational cost of the optimal multilevel randomized quasi-Monte-Carlo method, which uses randomly shifted low-discrepancy sequences, is one order of magnitude smaller than that of the optimal multilevel Monte-Carlo method and five orders of magnitude smaller than that of the standard Monte-Carlo method. The method developed here is applied to a realistic transport problem, namely the calculation of random-dopant effects in nanoscale field-effect transistors. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:480 / 497
页数:18
相关论文
共 50 条
  • [31] Improved stabilized multilevel monte carlo method for stiff stochastic differential equations
    ANMC, Section de Mathématiques, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
    Lect. Notes Comput. Sci. Eng., (537-545):
  • [32] DIVERGENCE OF THE MULTILEVEL MONTE CARLO EULER METHOD FOR NONLINEAR STOCHASTIC DIFFERENTIAL EQUATIONS
    Hutzenthaler, Martin
    Jentzen, Arnulf
    Kloeden, Peter E.
    ANNALS OF APPLIED PROBABILITY, 2013, 23 (05): : 1913 - 1966
  • [33] A Quasi-Monte Carlo Method for Optimal Control Under Uncertainty
    Guth, Philipp A.
    Kaarnioja, Vesa
    Kuo, Frances Y.
    Schillings, Claudia
    Sloan, Ian H.
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2021, 9 (02): : 354 - 383
  • [34] A randomized quasi-Monte Carlo simulation method for Markov chains
    L'Ecuyer, Pierre
    Lecot, Christian
    Tuffin, Bruno
    OPERATIONS RESEARCH, 2008, 56 (04) : 958 - 975
  • [35] A multilevel Monte Carlo ensemble and hybridizable discontinuous Galerkin method for a stochastic parabolic problem
    Li, Meng
    Luo, Xianbing
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2023, 39 (04) : 2840 - 2864
  • [36] A multilevel Monte Carlo finite element method for the stochastic Cahn–Hilliard–Cook equation
    Amirreza Khodadadian
    Maryam Parvizi
    Mostafa Abbaszadeh
    Mehdi Dehghan
    Clemens Heitzinger
    Computational Mechanics, 2019, 64 : 937 - 949
  • [37] An Adaptive Multilevel Monte Carlo Method with Stochastic Bounds for Quantities of Interest with Uncertain Data
    Eigel, Martin
    Merdon, Christian
    Neumann, Johannes
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2016, 4 (01): : 1219 - 1245
  • [38] A First-Passage Kinetic Monte Carlo method for reaction drift diffusion processes
    Mauro, Ava J.
    Sigurdsson, Jon Karl
    Shrake, Justin
    Atzberger, Paul J.
    Isaacson, Samuel A.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 259 : 536 - 567
  • [39] Variance reduction for generalized likelihood ratio method by conditional Monte Carlo and randomized Quasi-Monte Carlo methods
    Peng, Yijie
    Fu, Michael C.
    Hu, Jiaqiao
    L'Ecuyer, Pierre
    Tuffin, Bruno
    JOURNAL OF MANAGEMENT SCIENCE AND ENGINEERING, 2022, 7 (04) : 550 - 577
  • [40] A Quasi-Monte-Carlo-Based Feasible Sequential System of Linear Equations Method for Stochastic Programs with Recourse
    Zhou, Changyin
    Su, Rui
    Jiang, Zhihui
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2017, 2017