Quantum correlations in classical statistics

被引:0
|
作者
Wetterich, C [1 ]
机构
[1] Heidelberg Univ, Inst Theoret Phys, D-69120 Heidelberg, Germany
关键词
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum correlations can be naturally formulated in a classical statistical system of infinitely many degrees of freedom. This realizes the underlying noncommutative structure in a classical statistical setting. We argue that the quantum correlations offer a more robust description with respect to the precise definition of observables.
引用
收藏
页码:180 / 195
页数:16
相关论文
共 50 条
  • [31] DISTINGUISHABILITY OR INDISTINGUISHABILITY IN CLASSICAL AND QUANTUM STATISTICS
    KYPRIANIDIS, A
    ROY, S
    VIGIER, JP
    PHYSICS LETTERS A, 1987, 119 (07) : 333 - 336
  • [32] Quantum statistics of almost classical assemblies
    Kirwood, JG
    PHYSICAL REVIEW, 1933, 44 (01): : 31 - 37
  • [33] Quantum mechanics from classical statistics
    Wetterich, C.
    ANNALS OF PHYSICS, 2010, 325 (04) : 852 - 898
  • [34] Quantum particles from classical statistics
    Wetterich, C.
    ANNALEN DER PHYSIK, 2010, 522 (11) : 807 - 848
  • [35] Quantum and Classical Correlations in Waveguide Lattices
    Bromberg, Yaron
    Lahini, Yoav
    Morandotti, Roberto
    Silberberg, Yaron
    PHYSICAL REVIEW LETTERS, 2009, 102 (25)
  • [36] Classical correlations and entanglement in quantum measurements
    Vedral, V
    PHYSICAL REVIEW LETTERS, 2003, 90 (05)
  • [37] Quantum correlation without classical correlations
    Kaszlikowski, Dagomir
    Sen , Aditi
    Sen, Ujjwal
    Vedral, Vlatko
    Winter, Andreas
    PHYSICAL REVIEW LETTERS, 2008, 101 (07)
  • [38] Ergotropy from quantum and classical correlations
    Touil, Akram
    Cakmak, Baris
    Deffner, Sebastian
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2022, 55 (02)
  • [39] Unified View of Quantum and Classical Correlations
    Modi, Kavan
    Paterek, Tomasz
    Son, Wonmin
    Vedral, Vlatko
    Williamson, Mark
    PHYSICAL REVIEW LETTERS, 2010, 104 (08)
  • [40] Monogamy properties of quantum and classical correlations
    Luca Giorgi, Gian
    PHYSICAL REVIEW A, 2011, 84 (05):