On q-symmetric functions and q-quasisymmetric functions

被引:4
|
作者
Li, Yunnan [1 ,2 ]
机构
[1] S China Univ Technol, Sch Sci, Guangzhou 510640, Guangdong, Peoples R China
[2] E China Normal Univ, Dept Math, Shanghai 200241, Peoples R China
关键词
q-Hopf algebra; Odd quasisymmetric Schur function; Littlewood-Richardson rule; HOPF ALGEBRA; DUALITY;
D O I
10.1007/s10801-014-0538-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we construct the q-analogue of Poirier-Reutenauer algebras, related deeply with other q-combinatorial Hopf algebras. As an application, we use them to realize the odd Schur functions defined by Ellis, Khovanov, and Lauda, then naturally obtain the odd Littlewood-Richardson rule concerned by Ellis. Moreover, we construct the refinement of the odd Schur functions, called odd quasisymmetric Schur functions, parallel to the consideration by Haglund, Luoto, Mason, and van Willigenburg. All the q-Hopf algebras we discuss here provide the corresponding q-dual graded graphs.
引用
收藏
页码:323 / 364
页数:42
相关论文
共 50 条
  • [31] A q-specialization for monomial symmetric functions
    Lassalle, M
    ADVANCES IN MATHEMATICS, 2001, 162 (02) : 217 - 242
  • [32] ON SOME SYMMETRIC q-SPECIAL FUNCTIONS
    Brahim, Kamel
    Sidomou, Yosr
    MATEMATICHE, 2013, 68 (02): : 107 - 122
  • [33] Quasi-symmetric functions, noncommutative symmetric functions, and Hecke algebras at q=0
    Duchamp, G
    Krob, D
    Leclerc, B
    Thibon, JY
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1996, 322 (02): : 107 - 112
  • [34] Quasi-symmetric functions, noncommutative symmetric functions, and Hecke algebras at q = 0
    Duchamp, G.
    Krob, D.
    Leclerc, B.
    Thibon, J.-Y.
    Comptes Rendus De L'Academie Des Sciences. Serie I, Mathematique, 322 (02):
  • [35] Decomposable compositions, symmetric quasisymmetric functions and equality of ribbon Schur functions
    Billera, Louis J.
    Thomas, Hugh
    van Willigenburg, Stephanie
    ADVANCES IN MATHEMATICS, 2006, 204 (01) : 204 - 240
  • [36] q and q, t-analogs of non-commutative symmetric functions
    Bergeron, N
    Zabrocki, M
    DISCRETE MATHEMATICS, 2005, 298 (1-3) : 79 - 103
  • [37] On the relation of Clifford-Lipschitz groups to q-symmetric groups
    Fauser, B
    GROUP 22: PROCEEDINGS OF THE XII INTERNATIONAL COLLOQUIUM ON GROUP THEORETICAL METHODS IN PHYSICS, 1998, : 413 - 417
  • [38] Symmetric and generating functions of generalized (p,q)-numbers
    Saba, Nabiha
    Boussayoud, Ali
    Abderrezzak, Abdelhamid
    KUWAIT JOURNAL OF SCIENCE, 2021, 48 (04)
  • [39] Q -] Q DIFFERENTIABLE FUNCTIONS
    KNIGHT, W
    AMERICAN MATHEMATICAL MONTHLY, 1975, 82 (04): : 415 - 416
  • [40] Hopf algebra structure of symmetric and quasisymmetric functions in superspace
    Fishel, Susanna
    Lapointe, Luc
    Elena Pinto, Maria
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2019, 166 : 144 - 170