In this paper, we consider the problem (Q(epsilon)) : Delta(2)u = u(9) + epsilon f(x) in Omega, u = Delta u = 0 on partial derivative Omega, where Omega is a bounded and smooth domain in R-5, epsilon is a small positive parameter, and f is a smooth function. Our main purpose is to characterize the solutions with some assumptions on the energy. We prove that these solutions blow up at a critical point of a function depending on f and the regular part of the Green's function. Moreover, we construct families of solutions of (Q(epsilon)) which satisfy the conclusions of the first part.
机构:
Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Hubei, Peoples R China
Cent China Normal Univ, Hubei Key Lab Math Sci, Wuhan 430079, Hubei, Peoples R ChinaCent China Normal Univ, Sch Math & Stat, Wuhan 430079, Hubei, Peoples R China
Guo, Lun
Hu, Tingxi
论文数: 0引用数: 0
h-index: 0
机构:
Southwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R ChinaCent China Normal Univ, Sch Math & Stat, Wuhan 430079, Hubei, Peoples R China
Hu, Tingxi
Peng, Shuangjie
论文数: 0引用数: 0
h-index: 0
机构:
Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Hubei, Peoples R China
Cent China Normal Univ, Hubei Key Lab Math Sci, Wuhan 430079, Hubei, Peoples R ChinaCent China Normal Univ, Sch Math & Stat, Wuhan 430079, Hubei, Peoples R China
Peng, Shuangjie
Shuai, Wei
论文数: 0引用数: 0
h-index: 0
机构:
Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Hubei, Peoples R China
Cent China Normal Univ, Hubei Key Lab Math Sci, Wuhan 430079, Hubei, Peoples R China
Chinese Univ Hong Kong, Inst Math Sci, Shatin, Hong Kong, Peoples R ChinaCent China Normal Univ, Sch Math & Stat, Wuhan 430079, Hubei, Peoples R China
机构:
Fukushima Univ, Fac Symbiot Syst Sci, Dept Ind Syst, Fukushima 9601296, JapanFukushima Univ, Fac Symbiot Syst Sci, Dept Ind Syst, Fukushima 9601296, Japan