Theoretically optimal parameter choices for support vector regression machines with noisy input

被引:16
|
作者
Wang, ST [1 ]
Zhu, JG
Chung, FL
Lin, Q
Hu, DW
机构
[1] So Yangtze Univ, Sch Informat Engn, Wuxi, Peoples R China
[2] Nanjing Univ Sci & Tech, Dept Comp Sci & Engn, Nanjing, Peoples R China
[3] HongKong Polytech Univ, Dept Comp, Hong Kong, Hong Kong, Peoples R China
[4] Natl Def Univ Sci & Tech, Sch Automat, Changsha, Peoples R China
[5] Chinese Acad Sci, Inst Software, Comp Sci Lab, Beijing, Peoples R China
关键词
regularized linear regression; support vectors; Huber loss functions; norm-r loss functions;
D O I
10.1007/s00500-004-406-3
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
With the evidence framework, the regularized linear regression model can be explained as the corresponding MAP problem in this paper, and the general dependency relationships that the optimal parameters in this model with noisy input should follow is then derived. The support vector regression machines Huber-SVR and Norm-r r-SVR are two typical examples of this model and their optimal parameter choices are paid particular attention. It turns out that with the existence of the typical Gaussian noisy input, the parameter mu in Huber-SVR has the linear dependency with the input noise, and the parameter r in the r-SVR has the inversely proportional to the input noise. The theoretical results here will be helpful for us to apply kernel-based regression techniques effectively in practical applications.
引用
收藏
页码:732 / 741
页数:10
相关论文
共 50 条
  • [1] Theoretically Optimal Parameter Choices for Support Vector Regression Machines with Noisy Input
    Wang Shitong
    Zhu Jiagang
    F. L. Chung
    Lin Qing
    Hu Dewen
    Soft Computing, 2005, 9 : 732 - 741
  • [2] Experimental study on parameter choices in norm-r support vector regression machines with noisy input
    Wang, S
    Zhu, J
    Chung, FL
    Dewen, H
    SOFT COMPUTING, 2006, 10 (03) : 219 - 223
  • [3] Experimental study on parameter choices in norm-r support vector regression machines with noisy input
    S. Wang
    J. Zhu
    F. L. Chung
    Hu Dewen
    Soft Computing, 2006, 10 : 219 - 223
  • [4] On the optimal parameter choice for ν-support vector machines
    Steinwart, I
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2003, 25 (10) : 1274 - 1284
  • [5] Optimal parameter selection in support vector machines
    Schittkowski, K.
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2005, 1 (04) : 465 - 476
  • [6] An MPEC model for selecting optimal parameter in support vector machines
    Dong, Yu-Lin
    Xia, Zun-Quan
    Wang, Ming-Zheng
    OPTIMIZATION AND SYSTEMS BIOLOGY, 2007, 7 : 351 - +
  • [7] Detection of Optimal Models in Parameter Space with Support Vector Machines
    Demyanov, Vasily
    Pozdnoukhov, Alexei
    Christie, Mike
    Kanevski, Mikhail
    GEOENV VII - GEOSTATISTICS FOR ENVIRONMENTAL APPLICATIONS, 2010, 16 : 345 - +
  • [8] Support vector regression machines
    Drucker, H
    Burges, CJC
    Kaufman, L
    Smola, A
    Vapnik, V
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 9: PROCEEDINGS OF THE 1996 CONFERENCE, 1997, 9 : 155 - 161
  • [9] Evolutionary support vector regression machines
    Stoean, Ruxandra
    Preuss, Mike
    Dumitrescu, D.
    Stoean, Catalin
    SYNASC 2006: EIGHTH INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND NUMERIC ALGORITHMS FOR SCIENTIFIC COMPUTING, PROCEEDINGS, 2007, : 330 - +
  • [10] Analysis of Support Vector Machines Regression
    Tong, Hongzhi
    Chen, Di-Rong
    Peng, Lizhong
    FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2009, 9 (02) : 243 - 257