An MPEC model for selecting optimal parameter in support vector machines

被引:0
|
作者
Dong, Yu-Lin [1 ]
Xia, Zun-Quan [2 ]
Wang, Ming-Zheng [2 ,3 ]
机构
[1] Shandong Univ Sci & Technol, Coll Informat Sci & Technol, Qingdao 266510, Peoples R China
[2] Dalian Univ Technol, Dept Appl Math, Dalian 116024, Peoples R China
[3] Dalian Univ Technol, Sch Management, Dalian 116024, Peoples R China
来源
关键词
support vector machine; cost parameter; MPEC problem; nonsmooth optimization;
D O I
暂无
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we present a new MPEC model for calculating the optimal value of cost parameter C for particular problems of linear non-separability of data. The objective function of the new model is an integer lower semi-continuous one. Smoothing technique is employed for solving this model, and the relationship between the MPEC model and its associated smoothing problem is given. It is proved that one of the global solution of the smoothing problem is also a solution of the MPEC problem. Numerical experiments show that this model is more efficient for choosing the parameter C.
引用
收藏
页码:351 / +
页数:3
相关论文
共 50 条
  • [1] On the optimal parameter choice for ν-support vector machines
    Steinwart, I
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2003, 25 (10) : 1274 - 1284
  • [2] Optimal parameter selection in support vector machines
    Schittkowski, K.
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2005, 1 (04) : 465 - 476
  • [3] Model Parameter Selection of Support Vector Machines
    Zhao, Mingyuan
    Tang, Ke
    Zhou, Mingtian
    Zhang, Fengli
    Zeng, Ling
    2008 IEEE CONFERENCE ON CYBERNETICS AND INTELLIGENT SYSTEMS, VOLS 1 AND 2, 2008, : 128 - +
  • [4] Detection of Optimal Models in Parameter Space with Support Vector Machines
    Demyanov, Vasily
    Pozdnoukhov, Alexei
    Christie, Mike
    Kanevski, Mikhail
    GEOENV VII - GEOSTATISTICS FOR ENVIRONMENTAL APPLICATIONS, 2010, 16 : 345 - +
  • [5] An Automatic Method for Selecting the Parameter of the Normalized Kernel Function to Support Vector Machines
    Li, Cheng-Hsuan
    Ho, Hsin-Hua
    Liu, Yu-Lung
    Lin, Chin-Teng
    Kuo, Bor-Chen
    Taur, Jin-Shiuh
    JOURNAL OF INFORMATION SCIENCE AND ENGINEERING, 2012, 28 (01) : 1 - 15
  • [6] An Automatic Method for Selecting the Parameter of the Normalized Kernel Function to Support Vector Machines
    Li, Cheng-Hsuan
    Lin, Chin-Teng
    Kuo, Bor-Chen
    Ho, Hsin-Hua
    INTERNATIONAL CONFERENCE ON TECHNOLOGIES AND APPLICATIONS OF ARTIFICIAL INTELLIGENCE (TAAI 2010), 2010, : 226 - 232
  • [7] AN AUTOMATIC METHOD FOR SELECTING THE PARAMETER OF THE RBF KERNEL FUNCTION TO SUPPORT VECTOR MACHINES
    Li, Cheng-Hsuan
    Lin, Chin-Teng
    Kuo, Bor-Chen
    Chu, Hui-Shan
    2010 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2010, : 836 - 839
  • [8] A Speedy Model Parameter Optimization Algorithm of Support Vector Machines
    Chen, Zengzhao
    Liu, Chungui
    Yang, Yang
    He, Xiuling
    Dong, Cailin
    2008 7TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-23, 2008, : 7362 - +
  • [9] SELECTING OPTIMAL PORTFOLIO IN GENERALIZED FEED FORWARD NETWORKS AND SUPPORT VECTOR MACHINES HYBRIDS
    Loukeris, N.
    Eleftheriadis, I.
    Gikas, G.
    2021 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND COMPUTATIONAL INTELLIGENCE (CSCI 2021), 2021, : 495 - 501
  • [10] Theoretically Optimal Parameter Choices for Support Vector Regression Machines with Noisy Input
    Wang Shitong
    Zhu Jiagang
    F. L. Chung
    Lin Qing
    Hu Dewen
    Soft Computing, 2005, 9 : 732 - 741