Stability of an incomplete gamma-type functional equation

被引:0
|
作者
Lee, YW [1 ]
Choi, BM [1 ]
机构
[1] Daejeon Univ, Dept Comp & Informat Secur, Taejon 300716, South Korea
来源
MATHEMATICAL INEQUALITIES & APPLICATIONS | 2005年 / 8卷 / 03期
关键词
functional equation; stability of functional equation; Hyers-Ulam-Rassias stability; incomplete gamma function;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the Hyers-Ulam-Rassias stability of an incomplete gamma-type functional equation f(phi(1)(x(1)),center dot center dot center dot, phi n(x(n)), psi(1)(y(1)),center dot center dot center dot, psi(m)(y(m))) = 0(x(1),center dot center dot center dot, x(n), y(1),center dot center dot center dot, y(m))f(x(1),center dot center dot center dot, x(n), y(1),center dot center dot center dot, y(m)) + lambda(x(1),center dot center dot center dot, x(n), y(1),center dot center dot center dot y(m)) with a restricted domain. By this result we obtain the stability of the incomplete gamma functional equation f(x + 1, y) = xf(x, y) + e(-y)(y)(x) with a restricted domain.
引用
收藏
页码:477 / 486
页数:10
相关论文
共 50 条
  • [21] Generalized (p, q)-Gamma-type operators
    Cheng, Wen-Tao
    Cai, Qing-Bo
    JOURNAL OF FUNCTION SPACES, 2020, 2020
  • [22] Development of gamma-type energy filtering TEM
    Taya, S
    Taniguchi, Y
    Nakazawa, E
    Usukura, J
    JOURNAL OF ELECTRON MICROSCOPY, 1996, 45 (04): : 307 - 313
  • [23] A Strong Converse Inequality for Gamma-Type Operators
    J. A. Adell
    C. Sangüesa
    Constructive Approximation, 1999, 15 : 537 - 551
  • [24] GAMMA-TYPE ENDORPHINS AND SCHIZOPHRENIA - A CLINICAL REVIEW
    VERHOEVEN, WMA
    VANREE, JM
    DEWIED, D
    VANPRAAG, HM
    VERHOEVEN, WMA
    DEVELOPMENTS IN NEUROSCIENCE, 1983, 16 : 525 - 537
  • [25] A strong converse inequality for gamma-type operators
    Adell, JA
    Sangüesa, C
    CONSTRUCTIVE APPROXIMATION, 1999, 15 (04) : 537 - 551
  • [26] THE TREATMENT OF SCHIZOPHRENIC PSYCHOSES WITH GAMMA-TYPE ENDORPHINS
    VANPRAAG, HM
    VERHOEVEN, WMA
    VANREE, JM
    DEWIED, D
    BIOLOGICAL PSYCHIATRY, 1982, 17 (01) : 83 - 98
  • [27] Log-convex solutions to the functional equation f(x+1)=g(x)f(x): Gamma-type functions
    Webster, R
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1997, 209 (02) : 605 - 623
  • [28] Stability for the functional equation of cubic type
    Chang, Ick-Soon
    Jung, Yong-Soo
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 334 (01) : 85 - 96
  • [29] On the Stability of a Mixed Type Functional Equation
    Lee, Yang-Hi
    Jung, Soon-Mo
    KYUNGPOOK MATHEMATICAL JOURNAL, 2015, 55 (01): : 91 - 101
  • [30] ON THE STABILITY OF THE COSINE TYPE FUNCTIONAL EQUATION
    Kim, Gwang Hui
    JOURNAL OF THE KOREAN SOCIETY OF MATHEMATICAL EDUCATION SERIES B-PURE AND APPLIED MATHEMATICS, 2007, 14 (01): : 7 - 14