Stability of an incomplete gamma-type functional equation

被引:0
|
作者
Lee, YW [1 ]
Choi, BM [1 ]
机构
[1] Daejeon Univ, Dept Comp & Informat Secur, Taejon 300716, South Korea
来源
MATHEMATICAL INEQUALITIES & APPLICATIONS | 2005年 / 8卷 / 03期
关键词
functional equation; stability of functional equation; Hyers-Ulam-Rassias stability; incomplete gamma function;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the Hyers-Ulam-Rassias stability of an incomplete gamma-type functional equation f(phi(1)(x(1)),center dot center dot center dot, phi n(x(n)), psi(1)(y(1)),center dot center dot center dot, psi(m)(y(m))) = 0(x(1),center dot center dot center dot, x(n), y(1),center dot center dot center dot, y(m))f(x(1),center dot center dot center dot, x(n), y(1),center dot center dot center dot, y(m)) + lambda(x(1),center dot center dot center dot, x(n), y(1),center dot center dot center dot y(m)) with a restricted domain. By this result we obtain the stability of the incomplete gamma functional equation f(x + 1, y) = xf(x, y) + e(-y)(y)(x) with a restricted domain.
引用
收藏
页码:477 / 486
页数:10
相关论文
共 50 条
  • [1] On the stability of a general gamma-type functional equation
    Trif, T
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2002, 60 (1-2): : 47 - 61
  • [2] On the Stability of Gamma Functional Equation
    Jung S.-M.
    Results in Mathematics, 1998, 33 (3-4) : 306 - 309
  • [3] A MULTIVARIATE GAMMA-TYPE DISTRIBUTION
    KRISHNAMOORTHY, AS
    PARTHASARATHY, M
    ANNALS OF MATHEMATICAL STATISTICS, 1951, 22 (04): : 549 - 557
  • [4] A MULTIVARIATE GAMMA-TYPE DISTRIBUTION
    Ramabhadran, V. K.
    SANKHYA, 1951, 11 : 45 - 46
  • [5] GAMMA-TYPE APPROXIMATION OPERATORS
    LEVIATAN, D
    MATHEMATISCHE ZEITSCHRIFT, 1972, 124 (03) : 208 - &
  • [6] GAMMA-TYPE ENDORPHINS AND SCHIZOPHRENIA
    VERHOEVEN, WMA
    VANREE, JM
    DEWIED, D
    VANPRAAG, HM
    ARCHIVES OF GENERAL PSYCHIATRY, 1981, 38 (10) : 1182 - 1182
  • [7] AN EVALUATION OF THE GAMMA-TYPE™ KIT
    Guiver, Chloe J.
    Logan, Alison
    Wynn, Robert
    Lum, Su Han
    Bonney, Denise
    Tholouli, Eleni
    Saif, Muhammad
    Poulton, Kay
    HLA, 2017, 89 (06) : 412 - 412
  • [8] A Gamma-Type Distribution with Applications
    Iriarte, Yuri A.
    Varela, Hector
    Gomez, Hector J.
    Gomez, Hector W.
    SYMMETRY-BASEL, 2020, 12 (05):
  • [9] Remark on the Stability of the Gamma Functional Equation
    Alzer H.
    Results in Mathematics, 1999, 35 (3-4) : 199 - 200
  • [10] THE PROBABILISTIC STABILITY FOR THE GAMMA FUNCTIONAL EQUATION
    Mihet, Dorel
    Zaharia, Claudia
    JOURNAL OF SCIENCE AND ARTS, 2012, (03): : 297 - 302