Superflexible and Lead-Free Piezoelectric Nanogenerator as a Highly Sensitive Self-Powered Sensor for Human Motion Monitoring

被引:90
|
作者
Yu, Di [1 ]
Zheng, Zhipeng [1 ]
Liu, Jiadong [1 ]
Xiao, Hongyuan [1 ]
Geng Huangfu [1 ]
Guo, Yiping [1 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Mat Sci & Engn, State Key Lab Met Matrix Composites, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
Superfiexible; Piezoelectric sensors; Curie temperature; Human motion sensing; HIGH-PERFORMANCE; THIN-FILM; TRIBOELECTRIC NANOGENERATOR; ENERGY-CONVERSION; NANOFIBERS; NANOWIRES; MEMBRANE;
D O I
10.1007/s40820-021-00649-9
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
For traditional piezoelectric sensors based on poled ceramics, a low curie temperature (T-c) is a fatal flaw due to the depolarization phenomenon. However, in this study, we find the low T-c would be a benefit for flexible piezoelectric sensors because small alterations of force trigger large changes in polarization. BaTi0.88Sn0.12O3 (BTS) with high piezoelectric coefficient and low T-c close to human body temperature is taken as an example for materials of this kind. Continuous piezoelectric BTS films were deposited on the flexible glass fiber fabrics (GFF), self-powered sensors based on the ultra-thin, superflexible, and polarization-free BTS-GFF/PVDF composite piezoelectric films are used for human motion sensing. In the low force region (1-9 N), the sensors have the outstanding performance with voltage sensitivity of 1.23 V N-1 and current sensitivity of 41.0 nA N-1. The BTS-GFF/PVDF sensors can be used to detect the tiny forces of falling water drops, finger joint motion, tiny surface deformation, and fatigue driving with high sensitivity. This work provides a new paradigm for the preparation of superfiexible, highly sensitive and wearable self-powered piezoelectric sensors, and this kind of sensors will have a broad application prospect in the fields of medical rehabilitation, human motion monitoring, and intelligent robot.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Self-Powered Acoustic Sensor Based on Triboelectric Nanogenerator for Smart Monitoring
    Li, Yingzhe
    Liu, Chaoran
    Hu, Sanshan
    Sun, Peng
    Fang, Lingxing
    Lazarouk, Serguei
    Labunov, Vladimir
    Yang, Weihuang
    Li, Dujuan
    Fan, Kai
    Wang, Gaofeng
    Dong, Linxi
    Che, Lufeng
    ACOUSTICS AUSTRALIA, 2022, 50 (03) : 383 - 391
  • [22] Flexible Hybrid Nanogenerator for Self-Powered Weather and Healthcare Monitoring Sensor
    Lee, Taegoon
    Kim, Inkyum
    Kim, Daewon
    ADVANCED ELECTRONIC MATERIALS, 2021, 7 (12)
  • [23] Revisiting δ-PVDF based piezoelectric nanogenerator for self-powered pressure mapping sensor
    Gupta, Varun
    Babu, Anand
    Ghosh, Sujoy Kumar
    Mallick, Zinnia
    Mishra, Hari Krishna
    Saini, Dalip
    Mandal, Dipankar
    APPLIED PHYSICS LETTERS, 2021, 119 (25)
  • [24] Piezoelectric nanogenerator enabled fully self-powered instantaneous wireless sensor system
    Lu, Jiaqi
    Xu, Liangquan
    Hazarika, Dinku
    Zhang, Chi
    Li, Jie
    Wu, Jianhui
    Zhang, Kaihang
    Wan, Rui
    Xu, Xuefeng
    Chen, Jinkai
    Jin, Hao
    Dong, Shurong
    Huang, Yuhui
    Zhang, Qilong
    Wu, Yongjun
    Luo, Jikui
    NANO ENERGY, 2024, 129
  • [25] Design of Flexible Piezoelectric-Pyroelectric Nanogenerator for Self-Powered Wearable Sensor
    Maity, Kuntal
    Ghosh, Sujoy Kumar
    Xie, Mengying
    Bowen, Christopher Rhys
    Mandal, Dipankar
    DAE SOLID STATE PHYSICS SYMPOSIUM 2018, 2019, 2115
  • [26] Self-Powered Acoustic Sensor Based on Triboelectric Nanogenerator for Smart Monitoring
    Yingzhe Li
    Chaoran Liu
    Sanshan Hu
    Peng Sun
    Lingxing Fang
    Serguei Lazarouk
    Vladimir Labunov
    Weihuang Yang
    Dujuan Li
    Kai Fan
    Gaofeng Wang
    Linxi Dong
    Lufeng Che
    Acoustics Australia, 2022, 50 : 383 - 391
  • [27] An electrospun PVDF-KNN nanofiber based lead-free piezoelectric nanogenerator for mechanical energy scavenging and self-powered force sensing applications
    Athira, B. S.
    Surendran, Kuzhichalil Peethambharan
    Chandran, Achu
    SUSTAINABLE ENERGY & FUELS, 2023, 7 (24) : 5704 - 5713
  • [28] A self-powered multi-functional sensor based on triboelectric nanogenerator for monitoring states of rotating motion
    Lin, Senpeng
    Zhu, Lifeng
    Qiu, Ye
    Jiang, Zhengyang
    Wang, Yifei
    Zhu, Jun
    Wu, Huaping
    NANO ENERGY, 2021, 83
  • [29] Flexible Lead-Free Piezoelectric Ba0.94Sr0.06Sn0.09Ti0.91O3/PDMS Composite for Self-Powered Human Motion Monitoring
    Deng, Lin
    Deng, Weili
    Yang, Tao
    Tian, Guo
    Jin, Long
    Zhang, Hongrui
    Lan, Boling
    Wang, Shenglong
    Ao, Yong
    Wu, Bo
    Yang, Weiqing
    JOURNAL OF FUNCTIONAL BIOMATERIALS, 2023, 14 (01)
  • [30] An Effective Self-Powered Piezoelectric Sensor for Monitoring Basketball Skills
    Zhao, Chongle
    Jia, Changjun
    Zhu, Yongsheng
    Zhao, Tianming
    SENSORS, 2021, 21 (15)