CMT-DeepLab: Clustering Mask Transformers for Panoptic Segmentation

被引:42
|
作者
Yu, Qihang [1 ,4 ]
Wang, Huiyu [1 ]
Kim, Dahun [2 ]
Qiao, Siyuan [3 ]
Collins, Maxwell [3 ]
Zhu, Yukun [3 ]
Adam, Hartwig [3 ]
Yuille, Alan [1 ]
Chen, Liang-Chieh [3 ]
机构
[1] Johns Hopkins Univ, Baltimore, MD 21218 USA
[2] Korea Adv Inst Sci & Technol, Daejeon, South Korea
[3] Google Res, Mountain View, CA USA
[4] Google, Mountain View, CA 94043 USA
关键词
D O I
10.1109/CVPR52688.2022.00259
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose Clustering Mask Transformer (CMT-DeepLab), a transformer-based framework for panoptic segmentation designed around clustering. It rethinks the existing transformer architectures used in segmentation and detection; CMT-DeepLab considers the object queries as cluster centers, which fill the role of grouping the pixels when applied to segmentation. The clustering is computed with an alternating procedure, by first assigning pixels to the clusters by their feature affinity, and then updating the cluster centers and pixel features. Together, these operations comprise the Clustering Mask Transformer (CMT) layer, which produces cross-attention that is denser and more consistent with the final segmentation task. CMT-DeepLab improves the performance over prior art significantly by 4.4% PQ, achieving a new state-of-the-art of 55.7% PQ on the COCO test-dev set.
引用
收藏
页码:2550 / 2560
页数:11
相关论文
共 26 条
  • [11] UniDAformer: Unified Domain Adaptive Panoptic Segmentation Transformer via Hierarchical Mask Calibration
    Zhang, Jingyi
    Huang, Jiaxing
    Zhang, Xiaoqing
    Lu, Shijian
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 11227 - 11237
  • [12] Instance Segmentation with Mask-supervised Polygonal Boundary Transformers
    Lazarow, Justin
    Xu, Weijian
    Tu, Zhuowen
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 4372 - 4381
  • [13] A Divide-and-Merge Point Cloud Clustering Algorithm for LiDAR Panoptic Segmentation
    Zhao, Yiming
    Zhang, Xiao
    Huang, Xinming
    2022 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, ICRA 2022, 2022, : 7029 - 7035
  • [14] Point2Mask: Point-supervised Panoptic Segmentation via Optimal Transport
    Li, Wentong
    Yuan, Yuqian
    Wang, Song
    Zhu, Jianke
    Li, Jianshu
    Liu, Jian
    Zhang, Lei
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION, ICCV, 2023, : 572 - 581
  • [15] Bayesian segmentation and clustering for determining cloud mask images
    Barreto, D
    Murtagh, F
    Marcello, J
    OPTP-IRELAND 2002: OPTICAL METROLOGY, IMAGING, AND MACHINE VISION, 2003, 4877 : 144 - 155
  • [16] A Technical Survey and Evaluation of Traditional Point Cloud Clustering Methods for LiDAR Panoptic Segmentation
    Zhao, Yiming
    Zhang, Xiao
    Huang, Xinming
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2021), 2021, : 2464 - 2473
  • [17] Panoptic-PHNet: Towards Real-Time and High-Precision LiDAR Panoptic Segmentation via Clustering Pseudo Heatmap
    Li, Jinke
    He, Xiao
    Wen, Yang
    Gao, Yuan
    Cheng, Xiaoqiang
    Zhang, Dan
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 11799 - 11808
  • [18] Unsupervised Hierarchical Semantic Segmentation with Multiview Cosegmentation and Clustering Transformers
    Ke, Tsung-Wei
    Hwang, Jyh-Jing
    Guo, Yunhui
    Wang, Xudong
    Yu, Stella X.
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 2561 - 2571
  • [19] Mask4D: End-to-End Mask-Based 4D Panoptic Segmentation for LiDAR Sequences
    Marcuzzi, Rodrigo
    Nunes, Lucas
    Wiesmann, Louis
    Marks, Elias
    Behley, Jens
    Stachniss, Cyrill
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2023, 8 (11): : 7487 - 7494
  • [20] Mask DeepLab: End-to-end image segmentation for change detection in high-resolution remote sensing images
    Wang, Yanheng
    Gao, Lianru
    Hong, Danfeng
    Sha, Jianjun
    Liu, Lian
    Zhang, Bing
    Rong, Xianhui
    Zhang, Yonggang
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2021, 104