Bifurcations in globally coupled chaotic maps

被引:20
|
作者
Morita, S
机构
[1] Department of Physics, Graduate School of Sciences, Kyoto University
关键词
globally coupled maps; chaos; Frobenius-Perron equation; bifurcation; collective behavior;
D O I
10.1016/0375-9601(96)00012-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose a new method to investigate collective behavior in a network of globally coupled chaotic elements generated by a tent map. In the limit of large system size, the dynamics is described by the nonlinear Frobenius-Perron equation. This equation can be transformed into a simple form by making use of the piecewise linear nature of the individual map. Our method is applied successfully to the stability analysis of collective stationary states and their bifurcations.
引用
收藏
页码:258 / 264
页数:7
相关论文
共 50 条
  • [31] Globally coupled maps with sequential updating
    Jiang, Yu
    Antillón, A.
    Escalona, J.
    Physics Letters, Section A: General, Atomic and Solid State Physics, 1999, 262 (06): : 403 - 408
  • [32] Macroscopic chaos in globally coupled maps
    Cencini, M
    Falcioni, M
    Vergni, D
    Vulpiani, A
    PHYSICA D, 1999, 130 (1-2): : 58 - 72
  • [33] Globally coupled maps with sequential updating
    Jiang, Y
    Antillón, A
    Escalona, J
    PHYSICS LETTERS A, 1999, 262 (06) : 403 - 408
  • [34] Globally coupled maps with asynchronous updating
    Abramson, G
    Zanette, DH
    PHYSICAL REVIEW E, 1998, 58 (04): : 4454 - 4460
  • [35] Nonsimultaneity effects in globally coupled maps
    Perez, G
    Sinha, S
    Cerdeira, HA
    PHYSICAL REVIEW E, 1996, 54 (06): : 6936 - 6939
  • [36] Macroscopic chaos in globally coupled maps
    Cencini, M.
    Falcioni, M.
    Vergni, D.
    Vulpiani, A.
    Physica D: Nonlinear Phenomena, 130 (01): : 58 - 72
  • [37] Synchronization of coupled chaotic maps
    Medvedev, Georgi S.
    Tang, Xuezhi
    PHYSICA D-NONLINEAR PHENOMENA, 2015, 304 : 42 - 51
  • [38] Information integration in a globally coupled chaotic system
    Mori, Hiroki
    Oizumi, Masafumi
    2018 CONFERENCE ON ARTIFICIAL LIFE (ALIFE 2018), 2018, : 384 - 385
  • [39] Synchronization in a population of globally coupled chaotic oscillators
    Pikovsky, AS
    Rosenblum, MG
    Kurths, J
    EUROPHYSICS LETTERS, 1996, 34 (03): : 165 - 170
  • [40] Clustering in globally coupled system of chaotic circuits
    Miyamura, M
    Nishio, Y
    Ushida, A
    2002 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOL III, PROCEEDINGS, 2002, : 57 - 60