kinkyreg: Instrument-free inference for linear regression models with endogenous regressors

被引:43
|
作者
Kripfganz, Sebastian [1 ]
Kiviet, Jan F. [2 ,3 ]
机构
[1] Univ Exeter, Business Sch, Exeter, Devon, England
[2] Univ Amsterdam, Amsterdam, Netherlands
[3] Stellenbosch Univ, Stellenbosch, South Africa
来源
STATA JOURNAL | 2021年 / 21卷 / 03期
关键词
st0653; kinkyreg; kinkyreg2dta; kinkyreg postestimation; kinky least-squares; instrumental variables; instrument-free tests; endogenous regressors; confidence intervals; sensitivity analysis; specification tests; heteroskedasticity; serial correlation; exclusion restrictions; RESET; relative correlation restriction; Krauth's lambda; Oster's delta; graphical inference; LEAST-SQUARES REGRESSION; WEAK INSTRUMENTS; CONFIDENCE SETS; CORRECT SIZE; VARIABLES; TESTS; IDENTIFICATION;
D O I
10.1177/1536867X211045575
中图分类号
O1 [数学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 0701 ; 070101 ;
摘要
In models with endogenous regressors, a standard regression approach is to exploit just-identifying or overidentifying orthogonality conditions by using instrumental variables. In just-identified models, the identifying orthogonality assumptions cannot be tested without the imposition of other nontestable assumptions. While formal testing of overidentifying restrictions is possible, its interpretation still hinges on the validity of an initial set of untestable just-identifying orthogonality conditions. We present the kinkyreg command for kinky least-squares inference, which adopts an alternative approach to identification. By exploiting nonorthogonality conditions in the form of bounds on the admissible degree of endogeneity, feasible test procedures can be constructed that do not require instrumental variables. The kinky least-squares confidence bands can be more informative than confidence intervals obtained from instrumental-variables estimation, especially when the instruments are weak. Moreover, the approach facilitates a sensitivity analysis for standard instrumental-variables inference. In particular, it allows the user to assess the validity of previously untestable just-identifying exclusion restrictions. Further instrument-free tests include linear hypotheses, functional form, heteroskedasticity, and serial correlation tests.
引用
收藏
页码:772 / 813
页数:42
相关论文
共 50 条
  • [21] Robust inference in conditionally linear nonlinear regression models
    Paige, Robert L.
    Fernando, P. Harshini
    SCANDINAVIAN JOURNAL OF STATISTICS, 2008, 35 (01) : 158 - 168
  • [22] Inference in generalized linear regression models with a censored covariate
    Tsimikas, John V.
    Bantis, Leonidas E.
    Georgiou, Stelios D.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2012, 56 (06) : 1854 - 1868
  • [23] Statistical inference for multivariate partially linear regression models
    You, Jinhong
    Zhou, Yong
    Chen, Gemai
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2013, 41 (01): : 1 - 22
  • [24] Permutation inference distribution for linear regression and related models
    Wu, Qiang
    Vos, Paul
    JOURNAL OF NONPARAMETRIC STATISTICS, 2019, 31 (03) : 722 - 742
  • [25] Estimation and inference for functional linear regression models with partially varying regression coefficients
    Cao, Guanqun
    Wang, Shuoyang
    Wang, Lily
    STAT, 2020, 9 (01):
  • [26] Robust likelihood inference for regression parameters in partially linear models
    Shen, Chung-Wei
    Tsou, Tsung-Shan
    Balakrishnan, N.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2011, 55 (04) : 1696 - 1714
  • [27] Spatial Correlation Robust Inference in Linear Regression and Panel Models
    Mueller, Ulrich K.
    Watson, Mark W.
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2023, 41 (04) : 1050 - 1064
  • [28] Robust inference for generalized linear models with application to logistic regression
    Adimari, G
    Ventura, L
    STATISTICS & PROBABILITY LETTERS, 2001, 55 (04) : 413 - 419
  • [29] Statistical inference of partially linear regression models with heteroscedastic errors
    You, Jinhong
    Chen, Gemai
    Zhou, Yong
    JOURNAL OF MULTIVARIATE ANALYSIS, 2007, 98 (08) : 1539 - 1557
  • [30] Inference for the Optimum Using Linear Regression Models with Discrete Inputs
    Mee, Robert W.
    Li, Hui
    TECHNOMETRICS, 2024, 66 (02) : 172 - 181