Lithium Metal Penetration Induced by Electrodeposition through Solid Electrolytes: Example in Single-Crystal Li6La3ZrTaO12 Garnet

被引:184
|
作者
Swamy, Tushar [1 ]
Park, Richard [2 ]
Sheldon, Brian W. [3 ]
Rettenwander, Daniel [4 ]
Porz, Lukas [5 ]
Berendts, Stefan [6 ]
Uecker, Reinhard [7 ]
Carter, W. Craig [2 ]
Chiang, Yet-Ming [2 ]
机构
[1] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
[2] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
[3] Brown Univ, Sch Engn, Providence, RI 02912 USA
[4] Graz Univ Technol, Inst Chem & Technol Mat, A-8010 Graz, Austria
[5] Tech Univ Darmstadt, Inst Mat Sci, D-64287 Darmstadt, Germany
[6] Tech Univ Berlin, Dept Chem, Berlin, Germany
[7] Leibniz Inst Crystal Growth, D-12489 Berlin, Germany
基金
奥地利科学基金会;
关键词
INTERFACE STABILITY; FRACTURE-TOUGHNESS; BETA-ALUMINA; HIGH-ENERGY; LI; CHALLENGES; DEPOSITION; DEGRADATION; TEMPERATURE; PROPAGATION;
D O I
10.1149/2.1391814jes
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Solid electrolytes potentially enable rechargeable batteries with lithium metal anodes possessing higher energy densities than today's lithium ion batteries. To do so the solid electrolyte must suppress instabilities that lead to poor coulombic efficiency and short circuits. In this work, lithium electrodeposition was performed on single-crystal Li6La3ZrTaO12 garnets to investigate factors governing lithium penetration through brittle electrolytes. In single crystals, grain boundaries are excluded as paths for lithium metal propagation. Vickers microindentation was used to introduce surface flaws of known size. However, operando optical microscopy revealed that lithium metal penetration propagates preferentially from a different, second class of flaws. At the perimeter of surface current collectors smaller in size than the lithium source electrode, an enhanced electrodeposition current density causes lithium filled cracks to initiate and grow to penetration, even when large Vickers defects are in proximity. Modeling the electric field distribution in the experimental cell revealed that a 5-fold enhancement in field occurs within 10 micrometers of the electrode edge and generates high local electrochemomechanical stress. This may determine the initiation sites for lithium propagation, overriding the presence of larger defects elsewhere. (C) The Author(s) 2018. Published by ECS.
引用
收藏
页码:A3648 / A3655
页数:8
相关论文
共 50 条
  • [1] Solid Electrolytes: Extremely Fast Charge Carriers in Garnet-Type Li6La3ZrTaO12 Single Crystals
    Stanje, Bernhard
    Rettenwander, Daniel
    Breuer, Stefan
    Uitz, Marlena
    Berendts, Stefan
    Lerch, Martin
    Uecker, Reinhard
    Redhammer, Guenther
    Hanzu, Ilie
    Wilkening, Martin
    ANNALEN DER PHYSIK, 2017, 529 (12)
  • [2] High lithium ion conduction in garnet-type Li6La3ZrTaO12
    Li, Yutao
    Wang, Chang-An
    Xie, Hui
    Cheng, Jinguang
    Goodenough, John B.
    ELECTROCHEMISTRY COMMUNICATIONS, 2011, 13 (12) : 1289 - 1292
  • [3] Properties of garnet-type Li6La3ZrTaO12 solid electrolyte films fabricated by aerosol deposition method
    Ryoji Inada
    Takayuki Okada
    Akihiro Bando
    Tomohiro Tojo
    Yoji Sakurai
    ProgressinNaturalScience:MaterialsInternational, 2017, 27 (03) : 350 - 355
  • [4] Properties of garnet-type Li6La3ZrTaO12 solid electrolyte films fabricated by aerosol deposition method
    Inada, Ryoji
    Okada, Takayuki
    Bando, Akihiro
    Tojo, Tomohiro
    Sakurai, Yoji
    PROGRESS IN NATURAL SCIENCE-MATERIALS INTERNATIONAL, 2017, 27 (03) : 350 - 355
  • [5] Single-crystal neutron and X-ray diffraction study of garnet-type solid-state electrolyte Li6La3ZrTaO12: an in situ temperature-dependence investigation (2.5 ≤ T ≤ 873 K)
    Redhammer, Gunther J.
    Meven, Martin
    Ganschow, Steffen
    Tippelt, Gerold
    Rettenwander, Daniel
    ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL SCIENCE CRYSTAL ENGINEERING AND MATERIALS, 2021, 77 : 123 - 130
  • [6] Single-crystal neutron and X-ray diffraction study of garnet-type solid-state electrolyte Li6La3ZrTaO12: An in situ temperature-dependence investigation (2.5 ≤ T ≤ 873 K)
    Redhammer, Günther J.
    Meven, Martin
    Ganschow, Steffen
    Tippelt, Gerold
    Rettenwander, Daniel
    Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2021, 77 : 123 - 130
  • [7] Lithium-ion conductivity and crystal structure of garnet-type solid electrolyte Li7-xLa3Zr2-xTaxO12 using single-crystal
    Kataoka, Kunimitsu
    Akimoto, Junji
    JOURNAL OF THE CERAMIC SOCIETY OF JAPAN, 2019, 127 (08) : 521 - 526
  • [8] Solid-state lithium battery with garnet Li7La3Zr2O12 nanofibers composite polymer electrolytes
    Wang, Yifei
    Liu, Tao
    Liu, Chuwei
    Liu, Guoqiang
    Yu, Jingkun
    Zou, Qingjie
    SOLID STATE IONICS, 2022, 378
  • [9] Sintering behavior of garnet-type Li7La3Zr2O12-Li3BO3 composite solid electrolytes for all-solid-state lithium batteries
    Shin, Ran-Hee
    Son, Sam Ick
    Han, Yoon Soo
    Kim, Young Do
    Kim, Hyung-Tae
    Ryu, Sung-Soo
    Pan, Wei
    SOLID STATE IONICS, 2017, 301 : 10 - 14
  • [10] Large single-crystal growth of tetragonal garnet-type Li7La3Zr2O12 by melting method
    Kataoka, Kunimitsu
    Akimoto, Junji
    SOLID STATE IONICS, 2020, 349