Estimation of fracture parameters and in-situ stress parameter based on extended azimuthal elastic impedance

被引:2
|
作者
Li Lin [1 ,2 ]
Zhang GuangZhi [1 ,2 ]
机构
[1] China Univ Petr East China, Key Lab Deep Oil & Gas, Qingdao 266580, Peoples R China
[2] China Univ Petr East China, Sch Geosci, Qingdao 266580, Peoples R China
来源
关键词
Extended Azimuthal Elastic Impedance (EAEI); Fourier Coefficient (FC); Fracture parameter; Differential Horizontal Stress Ratio (DHSR); Seismic Bayesian inversion; FLUID FACTOR; INVERSION; PREDICTION; AMPLITUDE; COEFFICIENTS; WEAKNESSES; RESERVOIRS; OFFSET;
D O I
10.6038/cjg2022P0303
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Accurate estimation of fracture parameters and Differential Horizontal Stress Ratio (DHSR) is of great significance for subsurface fracture prediction and hydraulic fracturing. Extended Elastic Impedance (EEI) is an effective tool for the estimation of elastic parameters and physical parameters in isotropic media. However, EEI in isotropic media does not consider the influence of anisotropy. Here, we extend the EEI in isotropic media to Horizontal Transverse Isotropic (HTI) media, introduce the concept of Extended Azimuthal Elastic Impedance (EAEI), and propose a novel approach to estimate fracture parameters and DHSR using the Fourier Coefficient (FC) of EAEI. First, we derive the EAEI equation and FCs equation in HTI media. The analysis shows that the second FC of EAEI has a good correlation with fracture parameters and DHSR. Secondly, we propose a novel seismic Bayesian inversion with the regularization of the Cauchy-sparse constraint and smoothing model constraint to estimate intercept impedance, gradient impedance, and curvature impedance. Finally, we integrate the optimal rotation angles and the second FC of EAEI to estimate fracture parameters and DHSR, respectively. A synthetic data example and a field data application show that the proposed approach can provide reasonable and reliable inversion results of fracture parameters and DHSR, which help to guide the lateral identification of fracture development areas and favorable fracturing areas.
引用
收藏
页码:3172 / 3185
页数:14
相关论文
共 49 条
  • [31] Ruger A, 1998, GEOPHYSICS, V63, P935, DOI 10.1190/1.1444405
  • [32] Extended poroelastic impedance
    Russell, Brian H.
    Hedlin, Ken J.
    [J]. GEOPHYSICS, 2019, 84 (02) : N1 - N14
  • [33] Full-angle extended elastic impedance
    Sharifi, Javad
    Mirzakhanian, Marzieh
    [J]. INTERPRETATION-A JOURNAL OF SUBSURFACE CHARACTERIZATION, 2019, 7 (04): : T869 - T885
  • [34] Application of extended elastic impedance in seismic geomechanics
    Sharifi, Javad
    Moghaddas, Naser Hafezi
    Lashkaripour, Gholam Reza
    Javaherian, Abdolrahim
    Mirzakhanian, Marzieh
    [J]. GEOPHYSICS, 2019, 84 (03) : R429 - R446
  • [35] CORE-BASED PREDICTION OF LITHOLOGIC STRESS CONTRASTS IN EAST TEXAS FORMATIONS
    THIERCELIN, MJ
    PLUMB, RA
    [J]. SPE FORMATION EVALUATION, 1994, 9 (04): : 251 - 258
  • [36] Thomas M., 2013, SEG TECHN PROGR EXP, P2321, DOI [10.1190/segam2013-0224.1, DOI 10.1190/SEGAM2013-0224.1]
  • [37] Wang B., 2006, APPL GEOPHYS, V03, P174, DOI [10.1007/s11770-006-0026-z, DOI 10.1007/S11770-006-0018-Z]
  • [38] Wang S., 2021, Prog Geophys, V36, P675, DOI [10.6038/pg2021EE0212, DOI 10.6038/PG2021EE0212]
  • [39] Extended elastic impedance for fluid and lithology prediction
    Whitcombe, DN
    Connolly, PA
    Reagan, RL
    Redshaw, TC
    [J]. GEOPHYSICS, 2002, 67 (01) : 63 - 67
  • [40] Elastic impedance normalization
    Whitcombe, DN
    [J]. GEOPHYSICS, 2002, 67 (01) : 60 - 62