Privacy-Preserving Blockchain-Based Federated Learning for Marine Internet of Things

被引:36
|
作者
Qin, Zhenquan [1 ,2 ]
Ye, Jin [2 ]
Meng, Jie [2 ]
Lu, Bingxian [2 ]
Wang, Lei [2 ]
机构
[1] Dalian Univ Technol, Key Lab Ubiquitous Network & Serv Software Liaoni, Dalian 116620, Peoples R China
[2] Dalian Univ Technol, Sch Software, Dalian 116620, Peoples R China
基金
中国国家自然科学基金;
关键词
Blockchains; Collaborative work; Edge computing; Task analysis; Computational modeling; Reliability; Data privacy; Blockchain; edge computing; federated learning; marine Internet of things (MIoT); privacy; MARITIME INTERNET; RESEARCH ISSUES; SYSTEMS;
D O I
10.1109/TCSS.2021.3100258
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The marine Internet of things (MIoT) is the application of the Internet of things technology in the marine field. Nowadays, with the arrival of the era of big data, the MIoT architecture has been transformed from cloud computing architecture to edge computing architecture. However, due to the lack of trust among edge computing participants, new solutions with higher security need to be proposed. In the current solutions, some use blockchain technology to solve data security problems while some use federated learning technology to solve privacy problems, but these methods neither combine with the special environment of the ocean nor consider the security of task publishers. In this article, we propose a secure sharing method of MIoT data under an edge computing framework based on federated learning and blockchain technology. Combining its special distributed architecture with the MIoT edge computing architecture, federated learning ensures the privacy of nodes. The blockchain serves as a decentralized way, which stores federated learning workers to achieve nontampering and security. We propose a concept of quality and reputation as the metrics of selection for federated learning workers. Meanwhile, we design a quality proof mechanism [proof of quality (PoQ)] and apply it to the blockchain, making the edge nodes recorded in the blockchain more high-quality. In addition, a marine environment model is built in this article, and the analysis based on this model makes the method proposed in this article more applicable to the marine environment. The numerical results obtained from the simulation experiments clearly show that the proposed scheme can significantly improve the learning accuracy under the premise of ensuring the safety and reliability of the marine environment.
引用
收藏
页码:159 / 173
页数:15
相关论文
共 50 条
  • [41] Heterogeneous Personalized Privacy Protection for Internet of Medical Things: A Blockchain-based Federated Learning Approach
    Gao, Peisen
    Su, Jingyi
    Xu, Zerui
    Yuan, Xiaoming
    Fu, Yuchuan
    2023 IEEE INTERNATIONAL CONFERENCES ON INTERNET OF THINGS, ITHINGS IEEE GREEN COMPUTING AND COMMUNICATIONS, GREENCOM IEEE CYBER, PHYSICAL AND SOCIAL COMPUTING, CPSCOM IEEE SMART DATA, SMARTDATA AND IEEE CONGRESS ON CYBERMATICS,CYBERMATICS, 2024, : 377 - 382
  • [42] Data privacy-preserving of consortium blockchain in the internet of things
    Beijing Key Laboratory of Communication and Systems, School of Electronic and Information Engineering, Beijing Jiaotong University, Haidian District, Beijing, China
    不详
    J. Comput., 2020, 3 (275-288): : 275 - 288
  • [43] A Blockchain-Based Privacy-Preserving Trust and Reputation Management for Internet of Vehicles
    Wang, Hongyu
    Yang, Haitao
    Zhong, Wei
    Deng, Linfang
    Tong, Fei
    BLOCKCHAIN TECHNOLOGY AND APPLICATION, CBCS 2023, 2024, 2098 : 198 - 222
  • [44] Blockchain-based privacy-preserving incentive scheme for internet of electric vehicle
    Mei, Qian
    Guo, Wenxia
    Zhao, Yanan
    Nie, Liming
    Adhikari, Deepak
    INFORMATION FUSION, 2025, 115
  • [45] A privacy-preserving model for blockchain-based data sharing in the industrial internet
    Xue, Yudai
    Wang, Jinsong
    Shi, Kai
    Zhang, Hongwei
    TRANSACTIONS ON EMERGING TELECOMMUNICATIONS TECHNOLOGIES, 2024, 35 (04)
  • [46] Privacy-Preserving Federated Learning for Internet of Medical Things Under Edge Computing
    Wang, Ruijin
    Lai, Jinshan
    Zhang, Zhiyang
    Li, Xiong
    Vijayakumar, Pandi
    Karuppiah, Marimuthu
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2023, 27 (02) : 854 - 865
  • [47] A privacy-preserving Internet of Things device management scheme based on blockchain
    He, Qingsu
    Xu, Yu
    Liu, Zhoubin
    He, Jinhong
    Sun, You
    Zhang, Rui
    INTERNATIONAL JOURNAL OF DISTRIBUTED SENSOR NETWORKS, 2018, 14 (11)
  • [48] Decentralized Reputation-based Leader Election for Privacy-preserving Federated Learning on Internet of Things
    Peng, Luyao
    Tang, Xiangyun
    Li, Chenxi
    Xiao, Yao
    Zhang, Tao
    Weng, Yu
    2023 IEEE INTERNATIONAL CONFERENCES ON INTERNET OF THINGS, ITHINGS IEEE GREEN COMPUTING AND COMMUNICATIONS, GREENCOM IEEE CYBER, PHYSICAL AND SOCIAL COMPUTING, CPSCOM IEEE SMART DATA, SMARTDATA AND IEEE CONGRESS ON CYBERMATICS,CYBERMATICS, 2024, : 362 - 369
  • [49] A privacy-preserving federated learning framework for blockchain networks
    Abuzied, Youssif
    Ghanem, Mohamed
    Dawoud, Fadi
    Gamal, Habiba
    Soliman, Eslam
    Sharara, Hossam
    Elbatt, Tamer
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2024, 27 (04): : 3997 - 4014
  • [50] Privacy-Preserving Blockchain-Based Federated Learning for IoT Devices (vol 8, pg 1817, 2020)
    Zhao, Yang
    Zhao, Jun
    Jiang, Linshan
    Tan, Rui
    Niyato, Dusit
    Li, Zengxiang
    Lyu, Lingjuan
    Liu, Yingbo
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (01): : 973 - 973