Phase estimation in quantum optics

被引:0
|
作者
Rehácek, J [1 ]
Hradil, Z [1 ]
Dusek, M [1 ]
机构
[1] Palacky Univ, Dept Opt, Olomouc 77200, Czech Republic
关键词
phase estimation; operational phase concepts; maximum-likelihood principle;
D O I
10.1117/12.417812
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
An experimental comparison of several operational phase concepts is presented. In particular, it is shown that statistically motivated evaluation of experimental data may lead to a significant improvement in phase fitting upon the conventional Noh, Fougeres and Mandel procedure. The analysis is extended to the asymptotic limit of large intensities, where a strong evidence in favor of multi-dimensional estimation procedures has been found.
引用
收藏
页码:96 / 101
页数:6
相关论文
共 50 条
  • [41] States for phase estimation in quantum interferometry
    Combes, J
    Wiseman, HM
    JOURNAL OF OPTICS B-QUANTUM AND SEMICLASSICAL OPTICS, 2005, 7 (01) : 14 - 21
  • [42] Frequentist and Bayesian Quantum Phase Estimation
    Li, Yan
    Pezze, Luca
    Gessner, Manuel
    Ren, Zhihong
    Li, Weidong
    Smerzi, Augusto
    ENTROPY, 2018, 20 (09)
  • [43] Robust adaptive quantum phase estimation
    Roy, Shibdas
    Petersen, Ian R.
    Huntington, Elanor H.
    NEW JOURNAL OF PHYSICS, 2015, 17
  • [44] Adaptive quantum estimation of phase shifts
    Denot, D
    Bschorr, T
    Freyberger, M
    PHYSICAL REVIEW A, 2006, 73 (01):
  • [45] Quantum phase estimation with lossy interferometers
    Demkowicz-Dobrzanski, R.
    Dorner, U.
    Smith, B. J.
    Lundeen, J. S.
    Wasilewski, W.
    Banaszek, K.
    Walmsley, I. A.
    PHYSICAL REVIEW A, 2009, 80 (01):
  • [46] Simulation of a quantum algorithm for phase estimation
    Prokopenya, A. N.
    PROGRAMMING AND COMPUTER SOFTWARE, 2015, 41 (02) : 98 - 104
  • [47] Imperfect Distributed Quantum Phase Estimation
    Neumann, Niels M. P.
    van Houte, Roy
    Attema, Thomas
    COMPUTATIONAL SCIENCE - ICCS 2020, PT VI, 2020, 12142 : 605 - 615
  • [48] Quantum Enhanced Multiple Phase Estimation
    Humphreys, Peter C.
    Barbieri, Marco
    Datta, Animesh
    Walmsley, Ian A.
    PHYSICAL REVIEW LETTERS, 2013, 111 (07)
  • [49] A differentiable quantum phase estimation algorithm
    Castaldo, Davide
    Jahangiri, Soran
    Migliore, Agostino
    Arrazola, Juan Miguel
    Corni, Stefano
    QUANTUM SCIENCE AND TECHNOLOGY, 2024, 9 (04):
  • [50] OPTIMAL QUANTUM MEASUREMENTS FOR PHASE ESTIMATION
    SANDERS, BC
    MILBURN, GJ
    PHYSICAL REVIEW LETTERS, 1995, 75 (16) : 2944 - 2947