The structure of slices over minimal logic

被引:2
|
作者
Maksimova, L. L. [1 ]
机构
[1] Novosibirsk State Univ, Sobolev Inst Math, Novosibirsk, Russia
关键词
minimal logic; Kripke frame; decidability; slice;
D O I
10.1134/S003744661605013X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In [1], we introduced a classification of extensions of Johansson's minimal logic J by means of slices and proved the decidability of the classification. In this article, we find sufficiently simple necessary conditions for the maximality of logics in the slices formulated in terms of frames. This makes it possible to describe an efficient procedure for computing the slice number of any finitely axiomatizable logic over J. The maximal logics of the upper slices are written down explicitly.
引用
收藏
页码:841 / 848
页数:8
相关论文
共 50 条
  • [41] Proof search in minimal logic
    Schwichtenberg, H
    ARTIFICIAL INTELLIGENCE AND SYMBOLIC COMPUTATION, PROCEEDINGS, 2004, 3249 : 15 - 25
  • [42] Minimal Systems of Temporal Logic
    Surowik, Dariusz
    AXIOMS, 2020, 9 (02)
  • [43] Embedding Coalition Logic in the Minimal Normal Multimodal Logic with Intersection
    Agotnes, Thomas
    Alechina, Natasha
    MODALITY, SEMANTICS AND INTERPRETATIONS: THE SECOND ASIAN WORKSHOP ON PHILOSOPHICAL LOGIC, 2015, : 1 - 22
  • [44] ONE-DIMENSIONAL GROUPS OVER AN O-MINIMAL STRUCTURE
    RAZENJ, V
    ANNALS OF PURE AND APPLIED LOGIC, 1991, 53 (03) : 269 - 277
  • [45] Differential equations over polynomially bounded o-minimal structure
    Lion, JM
    Miller, C
    Speissegger, P
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 131 (01) : 175 - 183
  • [46] The system Bp+:: a minimal positive logic for minimal negation
    Mendez, Jose M.
    Salto, Francisco
    Robles, Gemma
    THEORIA-REVISTA DE TEORIA HISTORIA Y FUNDAMENTOS DE LA CIENCIA, 2007, 22 (01): : 81 - 91
  • [47] Joint consistency in extensions of the minimal logic
    Maksimova, L. L.
    SIBERIAN MATHEMATICAL JOURNAL, 2010, 51 (03) : 479 - 490
  • [48] MINLOG: A minimal logic theorem prover
    Slaney, J
    AUTOMATED DEDUCTION - CADE-14, 1997, 1249 : 268 - 271
  • [49] Effective prover for minimal inconsistency logic
    Neto, Adolfo Gustavo Serra Seca
    Finger, Marcelo
    ARTIFICIAL INTELLIGENCE IN THEORY AND PRACTICE, 2006, 217 : 465 - +
  • [50] Extensions of the Minimal Logic and the Interpolation Problem
    Maksimova, L. L.
    Yun, V. F.
    SIBERIAN MATHEMATICAL JOURNAL, 2018, 59 (04) : 681 - 693