Straw return strategies to improve soil properties and crop productivity in a winter wheat-summer maize cropping system

被引:67
|
作者
Cui, Haixing [1 ,2 ]
Luo, Yongli [1 ,2 ]
Chen, Jin [2 ]
Jin, Min [1 ,2 ]
Li, Yong [1 ,2 ]
Wang, Zhenlin [1 ,2 ]
机构
[1] Shandong Agr Univ, Coll Agron, Tai An 271018, Shandong, Peoples R China
[2] Shandong Agr Univ, State Key Lab Crop Biol, Tai An 271018, Shandong, Peoples R China
关键词
Tillage strategy; Carbon input; Soil physicochemical property; Soil microorganism; Annual crop yield; POOL MANAGEMENT INDEX; ORGANIC-CARBON; MICROBIAL COMMUNITY; RESIDUE MANAGEMENT; ENZYME-ACTIVITIES; BIOCHAR ADDITION; SEMIARID REGION; NITRATE-N; YIELD; AGGREGATE;
D O I
10.1016/j.eja.2021.126436
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Crop straw return is widely implemented in winter wheat and summer maize rotation systems. Nevertheless, research characterizing how different straw return methods affect soil properties and grain yield in this double cropping system has been limited. A fixed-site field trial was carried out from 2017 to 2020 to examine the impacts of four straw return methods on the annual changes of soil properties within the top 0-20 cm of soil and grain yield in a winter wheat-summer maize cropping system in North China. The four treatments were: (1) both wheat and maize straw removal (CK), (2) application of only maize straw (W0M1), (3) application of only wheat straw (W1M0), and (4) both wheat and maize straw application (W1M1). The cumulative carbon inputs under the four straw return methods ranged from 11.87 to 36.51 Mg ha-1, which led to changes in SOC stock of - 1.30-2.16 Mg ha-1 from 2017 to 2020. Straw return significantly increased the contents of soil organic carbon, mineral nitrogen and available phosphorus. In addition, the soil urease, alkaline phosphatase activities and microbial diversity under straw returning treatment were significantly higher than those in CK. Significant linear relationships existed between annual carbon inputs and soil nutrient contents. And annual straw return had cumulative effects on changes of soil properties. Straw return significantly increased grain yield in the doublecropping system, and significant correlations were observed between the annual changes of grain yield and soil properties. Overall, the W1M1 treatment was the most effective strategy for improving soil properties and crop yield. Return of maize straw alone also maintained relatively high soil fertility with significantly lower carbon inputs, which allows the unused wheat straw to be used for other purposes and maximize the utilization efficiency of all straw resources.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Effect of water saving management practices and nitrogen fertilizer rate on crop yield and water use efficiency in a winter wheat-summer maize cropping system
    Zhou, Jian-bin
    Wang, Chun-yang
    Zhang, Hong
    Dong, Fang
    Zheng, Xian-feng
    Gale, William
    Li, Sheng-xiu
    FIELD CROPS RESEARCH, 2011, 122 (02) : 157 - 163
  • [22] Hydrologic Simulation of a Winter Wheat-Summer Maize Cropping System in an Irrigation District of the Lower Yellow River Basin, China
    Liu, Lei
    Ma, Jianqin
    Luo, Yi
    He, Chansheng
    Liu, Tiegang
    WATER, 2017, 9 (01)
  • [23] Soil nitrate nitrogen buffer capacity and environmentally safe nitrogen rate for winter wheat-summer maize cropping in Northern China
    Liu, Lin
    Yao, Shan
    Zhang, Hongtao
    Muhammed, Ayaz
    Xu, Jiaxing
    Li, Ruonan
    Zhang, Dongjie
    Zhang, Shulan
    Yang, Xueyun
    AGRICULTURAL WATER MANAGEMENT, 2019, 213 : 445 - 453
  • [24] Evaluation of nitrogen and water management in winter wheat-summer maize cropping system in north china plain using RZWQM
    College of Water Resources & Civil Engineering, China Agricultural University, Beijing
    100083, China
    不详
    100875, China
    Nongye Jixie Xuebao, 6 (111-120): : 111 - 120
  • [25] Long-term Tillage Alters Soil Properties and Rhizosphere Bacterial Community in Lime Concretion Black Soil under Winter Wheat-Summer Maize Double-Cropping System
    Sun, Qing
    Zhang, Peiyu
    Liu, Xiang
    Zhang, Hongsheng
    Liu, Shutang
    Sun, Xuefang
    Jiang, Wen
    AGRONOMY-BASEL, 2023, 13 (03):
  • [26] Quantifying water footprint of winter wheat-summer maize cropping system under manure application and limited irrigation: An integrated approach
    Wang, Xiquan
    Jia, Rong
    Zhao, Jie
    Yang, Yadong
    Zang, Huadong
    Zeng, Zhaohai
    Olesen, Jurgen Eivind
    RESOURCES CONSERVATION AND RECYCLING, 2022, 183
  • [27] Effects of saline irrigation on soil salt accumulation and grain yield in the winter wheat-summer maize double cropping system in the low plain of North China
    Liu Xiu-wei
    Feike, Til
    Chen Su-ying
    Shao Li-wei
    Sun Hong-yong
    Zhang Xi-ying
    JOURNAL OF INTEGRATIVE AGRICULTURE, 2016, 15 (12) : 2886 - 2898
  • [28] Effects of saline irrigation on soil salt accumulation and grain yield in the winter wheat-summer maize double cropping system in the low plain of North China
    LIU Xiu-wei
    Til Feike
    CHEN Su-ying
    SHAO Li-wei
    SUN Hong-yong
    ZHANG Xi-ying
    Journal of Integrative Agriculture, 2016, 15 (12) : 2886 - 2898
  • [29] Soil water utilization with plastic mulching for a winter wheat-summer maize rotation system on the Loess Plateau of China
    Ding, Dianyuan
    Zhao, Ying
    Feng, Hao
    Hill, Robert Lee
    Chu, Xiaosheng
    Zhang, Tibin
    He, Jianqiang
    AGRICULTURAL WATER MANAGEMENT, 2018, 201 : 246 - 257
  • [30] Covering farming pattern to improve soil physical properties and crop yield in wheat-maize cropping system
    Zhao, Hongxiang
    Chi, Shuyun
    Ning, Tangyuan
    Tian, Shenzhong
    Wang, Bingwen
    Li, Zengjia
    Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 2013, 29 (09): : 113 - 122