Comparison of statistical enhancement methods for Monte Carlo semiconductor simulation

被引:16
|
作者
Wordelman, CJ
Kwan, TJT
Snell, CM
机构
[1] Univ Illinois, Dept Elect & Comp Engn, Urbana, IL 61801 USA
[2] Univ Calif Los Alamos Natl Lab, Plasma Phys Applicat Grp, Los Alamos, NM 87544 USA
[3] Univ Calif Los Alamos Natl Lab, Transport Methods Grp, Los Alamos, NM 87544 USA
关键词
Monte Carlo; statistical enhancement; variance reduction;
D O I
10.1109/43.736562
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Three methods of variable-weight statistical enhancement for Monte Carte semiconductor device simulation are compared, The stead-state statistical errors and figures of merit for implementations of the multicomb, cloning-rouletting, and splitting-gathering enhancement methods are obtained for bulk silicon simulations, The results indicate that all methods enhance the high-energy distribution tail with comparable accuracy, but that the splitting-gathering method achieves a lower error at low energies bg automatically preserving a peak in the bin populations at the peak of the particle energy distribution.
引用
收藏
页码:1230 / 1235
页数:6
相关论文
共 50 条
  • [31] CONVENTIONAL PROBABILITY METHODS AND MONTE-CARLO SIMULATION TECHNIQUES - COMPARISON OF RESULTS
    LE, KD
    IEEE TRANSACTIONS ON POWER APPARATUS AND SYSTEMS, 1978, 97 (04): : 1013 - 1013
  • [32] Comparison of Bootstrap Confidence Interval Methods for GSCA Using a Monte Carlo Simulation
    Jung, Kwanghee
    Lee, Jaehoon
    Gupta, Vibhuti
    Cho, Gyeongcheol
    FRONTIERS IN PSYCHOLOGY, 2019, 10
  • [33] NONLINEAR MONTE CARLO MISSION SIMULATION AND STATISTICAL ANALYSIS
    Potts, Christopher L.
    Kelly, Richard M.
    Goodson, Troy D.
    ASTRODYNAMICS 2009, VOL 135, PTS 1-3, 2010, 135 : 1725 - 1740
  • [34] The Application of Monte Carlo Simulation for Statistical Process Control
    Zhang, Lin
    PROCEEDINGS OF 2009 INTERNATIONAL CONFERENCE OF MANAGEMENT ENGINEERING AND INFORMATION TECHNOLOGY, VOLS 1 AND 2, 2009, : 853 - 856
  • [35] Quasi-Monte Carlo methods for simulation
    L'Ecuyer, P
    PROCEEDINGS OF THE 2003 WINTER SIMULATION CONFERENCE, VOLS 1 AND 2, 2003, : 81 - 89
  • [36] AN OVERVIEW OF MONTE CARLO METHODS FOR FLUID SIMULATION
    Orkoulas, Gerassimos
    COMPUTING IN SCIENCE & ENGINEERING, 2009, 11 (05) : 76 - 87
  • [37] Statistical methods for interpreting Monte Carlo ensemble forecasts
    Stephenson, DB
    Doblas-Reyes, FJ
    TELLUS SERIES A-DYNAMIC METEOROLOGY AND OCEANOGRAPHY, 2000, 52 (03) : 300 - 322
  • [38] Monte Carlo Simulation for Statistical Decay of Compound Nucleus
    Kawano, T.
    Talou, P.
    Chadwick, M. B.
    CNR*11 - THIRD INTERNATIONAL WORKSHOP ON COMPOUND NUCLEAR REACTIONS AND RELATED TOPICS, 2012, 21
  • [39] Exponent Monte Carlo for Quick Statistical Circuit Simulation
    Zuber, Paul
    Matvejev, Vladimir
    Roussel, Philippe
    Dobrovolny, Petr
    Miranda, Miguel
    INTEGRATED CIRCUIT AND SYSTEM DESIGN: POWER AND TIMING MODELING, OPTIMIZATION AND SIMULATION, 2010, 5953 : 36 - +
  • [40] Sequential Monte Carlo methods for statistical analysis of tables
    Chen, YG
    Diaconis, P
    Holmes, SR
    Liu, JS
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2005, 100 (469) : 109 - 120