Agglomerative hierarchical clustering technique for partitioning patent dataset

被引:0
|
作者
Smarika [1 ]
Mattas, Nisha [1 ]
Kalra, Parul [1 ]
Mehrotra, Deepti [1 ]
机构
[1] Amity Univ Uttar, ASET, Noida, Uttar Pradesh, India
关键词
Agglomerative hierarchical clustering; dataset; patent; PATSTAT; Tanagra;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Mining right patents from database have always been interesting and the most difficult task for analysis purposes. The choice of right data mining tool and algorithm is requisite for reducing the search space, thus enabling extraction of meaningful and useful information for technology forecasting. With clustering approach, this can be easily achieved. This paper discusses about Clustering technique called Agglomerative hierarchical clustering using Tanagra tool. It groups patents with similar characteristics into one cluster based on between sum of square (BSS ratio) and Gap parameters.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] Constrained Agglomerative Hierarchical Clustering Algorithms with Penalties
    Miyamoto, Sadaaki
    Terami, Akihisa
    IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ 2011), 2011, : 422 - 427
  • [22] A general framework for agglomerative hierarchical clustering algorithms
    Gil-Garcia, Reynaldo J.
    Badia-Contelles, Josd M.
    Pons-Porrata, Aurora
    18TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 2, PROCEEDINGS, 2006, : 569 - 572
  • [23] Competence maps using agglomerative hierarchical clustering
    Ahmad Barirani
    Bruno Agard
    Catherine Beaudry
    Journal of Intelligent Manufacturing, 2013, 24 : 373 - 384
  • [24] An Agglomerative Hierarchical Clustering Framework for Improving the Ensemble Clustering Process
    Jafarzadegan, Mohammad
    Safi-Esfahani, Faramarz
    Beheshti, Zahra
    CYBERNETICS AND SYSTEMS, 2022, 53 (08) : 679 - 701
  • [25] Intelligent control of the hierarchical agglomerative clustering process
    Yager, RR
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2000, 30 (06): : 835 - 845
  • [26] Resolving the structure of interactomes with hierarchical agglomerative clustering
    Park, Yongjin
    Bader, Joel S.
    BMC BIOINFORMATICS, 2011, 12
  • [27] Asymmetric agglomerative hierarchical clustering algorithms and their evaluations
    Takeuchi, Akinobu
    Saito, Takayuki
    Yadohisa, Hiroshi
    JOURNAL OF CLASSIFICATION, 2007, 24 (01) : 123 - 143
  • [28] Empirical Comparison of Distances for Agglomerative Hierarchical Clustering
    Tsumoto, Shusaku
    Kimura, Tomohiro
    Iwata, Haruko
    Hirano, Shoji
    INFORMATION PROCESSING AND MANAGEMENT OF UNCERTAINTY IN KNOWLEDGE-BASED SYSTEMS: THEORY AND FOUNDATIONS, PT II, 2018, 854 : 538 - 548
  • [29] Asymmetric Agglomerative Hierarchical Clustering Algorithms and Their Evaluations
    Akinobu Takeuchi
    Takayuki Saito
    Hiroshi Yadohisa
    Journal of Classification, 2007, 24 : 123 - 143
  • [30] Empirical Comparison of Similarities for Agglomerative Hierarchical Clustering
    Tsumoto, Shusaku
    Hirano, Shoji
    Kimura, Tomohiro
    Iwata, Haruko
    2018 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2018, : 3405 - 3410