Agglomerative hierarchical clustering technique for partitioning patent dataset

被引:0
|
作者
Smarika [1 ]
Mattas, Nisha [1 ]
Kalra, Parul [1 ]
Mehrotra, Deepti [1 ]
机构
[1] Amity Univ Uttar, ASET, Noida, Uttar Pradesh, India
关键词
Agglomerative hierarchical clustering; dataset; patent; PATSTAT; Tanagra;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Mining right patents from database have always been interesting and the most difficult task for analysis purposes. The choice of right data mining tool and algorithm is requisite for reducing the search space, thus enabling extraction of meaningful and useful information for technology forecasting. With clustering approach, this can be easily achieved. This paper discusses about Clustering technique called Agglomerative hierarchical clustering using Tanagra tool. It groups patents with similar characteristics into one cluster based on between sum of square (BSS ratio) and Gap parameters.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] An efficient Hybrid Hierarchical Agglomerative Clustering (HHAC) technique for partitioning large data sets
    Vijaya, PA
    Murty, MN
    Subramanian, DK
    PATTERN RECOGNITION AND MACHINE INTELLIGENCE, PROCEEDINGS, 2005, 3776 : 583 - 588
  • [2] Horizontal Partitioning of Multimedia Databases Using Hierarchical Agglomerative Clustering
    Rodriguez-Mazahua, Lisbeth
    Alor-Hernandez, Giner
    Antonieta Abud-Figueroa, Ma.
    Gustavo Pelaez-Camarena, S.
    NATURE-INSPIRED COMPUTATION AND MACHINE LEARNING, PT II, 2014, 8857 : 296 - 309
  • [3] HIERARCHICAL AGGLOMERATIVE CLUSTERING PROCEDURE
    LUKASOVA, A
    PATTERN RECOGNITION, 1979, 11 (5-6) : 365 - 381
  • [4] Scalable Hierarchical Agglomerative Clustering
    Monath, Nicholas
    Dubey, Kumar Avinava
    Guruganesh, Guru
    Zaheer, Manzil
    Ahmed, Amr
    McCallum, Andrew
    Mergen, Gokhan
    Najork, Marc
    Terzihan, Mert
    Tjanaka, Bryon
    Wang, Yuan
    Wu, Yuchen
    KDD '21: PROCEEDINGS OF THE 27TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2021, : 1245 - 1255
  • [5] Efficient agglomerative hierarchical clustering
    Bouguettaya, Athman
    Yu, Qi
    Liu, Xumin
    Zhou, Xiangmin
    Song, Andy
    EXPERT SYSTEMS WITH APPLICATIONS, 2015, 42 (05) : 2785 - 2797
  • [6] Agglomerative hierarchical clustering for data with tolerance
    Yasunori, Endo
    Yukihiro, Hamasuna
    Sadaaki, Miyamoto
    GRC: 2007 IEEE INTERNATIONAL CONFERENCE ON GRANULAR COMPUTING, PROCEEDINGS, 2007, : 404 - 409
  • [7] Hierarchical subtrees agglomerative clustering algorithms
    Beijing Municipal Key Laboratory of Multimedia and Intelligent Software Technology, College of Computer Science and Technology, Beijing University of Technology, Beijing 100022, China
    Beijing Gongye Daxue Xuebao J. Beijing Univ. Technol., 2006, 5 (442-446):
  • [8] Fair Algorithms for Hierarchical Agglomerative Clustering
    Chhabra, Anshuman
    Mohapatra, Prasant
    2022 21ST IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS, ICMLA, 2022, : 206 - 211
  • [9] Agglomerative and divisive hierarchical Bayesian clustering
    Burghardt, Elliot
    Sewell, Daniel
    Cavanaugh, Joseph
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2022, 176
  • [10] Geometric algorithms for agglomerative hierarchical clustering
    Chen, DZ
    Xu, B
    COMPUTING AND COMBINATORICS, PROCEEDINGS, 2003, 2697 : 30 - 39