Improving Children Diagnostics by Efficient Multi-label Classification Method

被引:12
|
作者
Glinka, Kinga [1 ]
Wosiak, Agnieszka [1 ]
Zakrzewska, Danuta [1 ]
机构
[1] Lodz Univ Technol, Inst Informat Technol, Wolczanska 215, Lodz, Poland
关键词
Children diagnostics; Problem transformation methods; Labels chain; Multi-label classification; HYPERTENSION;
D O I
10.1007/978-3-319-39796-2_21
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Using intelligent computational methods may support children diagnostics process. As in many cases patients are affected by multiple illnesses, multi-perspective view on patient data is necessary to improve medical decision making. In the paper, multi-label classification method-Labels Chain is considered. It performs well when the number of attributes significantly exceeds the number of instances. The effectiveness of the method is checked by experiments conducted on real data. The obtained results are evaluated by using two metrics: Classification Accuracy and Hamming Loss, and compared to the effects of the most popular techniques: Binary Relevance and Label Power-set.
引用
收藏
页码:253 / 266
页数:14
相关论文
共 50 条
  • [31] A lazy feature selection method for multi-label classification
    Pereira, Rafael B.
    Plastino, Alexandre
    Zadrozny, Bianca
    Merschmann, Luiz H. C.
    INTELLIGENT DATA ANALYSIS, 2021, 25 (01) : 21 - 34
  • [32] WiseTag: An Ensemble Method for Multi-label Topic Classification
    Liang, Guanqing
    Kao, Hsiaohsien
    Leung, Cane Wing-Ki
    He, Chao
    NATURAL LANGUAGE PROCESSING AND CHINESE COMPUTING, NLPCC 2018, PT II, 2018, 11109 : 479 - 489
  • [33] A Classification Method for Small Sample Multi-label Images
    Li, Ruohan
    Jiang, Zengru
    Dai, Wei
    Nie, Yongkang
    Liu, Liang
    Dai, Yaping
    PROCEEDINGS OF THE 2019 31ST CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2019), 2019, : 1365 - 1370
  • [34] Selecting a Multi-Label Classification Method for an Interactive System
    Nair-Benrekia, Noureddine-Yassine
    Kuntz, Pascale
    Meyer, Frank
    DATA SCIENCE, LEARNING BY LATENT STRUCTURES, AND KNOWLEDGE DISCOVERY, 2015, : 157 - 167
  • [35] Multi-label Text Classification Method Based on Label Semantic Information
    Xiao L.
    Chen B.-L.
    Huang X.
    Liu H.-F.
    Jing L.-P.
    Yu J.
    Ruan Jian Xue Bao/Journal of Software, 2020, 31 (04): : 1079 - 1089
  • [36] Scalable and efficient multi-label classification for evolving data streams
    Read, Jesse
    Bifet, Albert
    Holmes, Geoff
    Pfahringer, Bernhard
    MACHINE LEARNING, 2012, 88 (1-2) : 243 - 272
  • [37] Efficient Multi-label Classification using Attribute and Instance Selection
    Sane, Shirish S.
    Tidake, Vaishali S.
    BIOSCIENCE BIOTECHNOLOGY RESEARCH COMMUNICATIONS, 2020, 13 (14): : 221 - 226
  • [38] An Efficient Multi-Label Classification System Using Ensemble of Classifiers
    Chandran, Shilpa A.
    Panicker, Janu R.
    2017 INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING, INSTRUMENTATION AND CONTROL TECHNOLOGIES (ICICICT), 2017, : 1133 - 1136
  • [39] An Efficient Framework by Topic Model for Multi-label Text Classification
    Sun, Wei
    Ran, Xiangying
    Luo, Xiangyang
    Wang, Chongjun
    2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,
  • [40] Scalable and efficient multi-label classification for evolving data streams
    Jesse Read
    Albert Bifet
    Geoff Holmes
    Bernhard Pfahringer
    Machine Learning, 2012, 88 : 243 - 272