Using visible SNR (vSNR) to compare the image quality of pixel binning and digital resizing

被引:8
|
作者
Farrell, Joyce [1 ]
Okincha, Mike [2 ]
Parmar, Manu [1 ,3 ]
Wandell, Brian [1 ,3 ]
机构
[1] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
[2] Omnivis Technol, Santa Clara, CA 95054 USA
[3] Stanford Univ, Dept Psychol, Stanford, CA 94305 USA
来源
DIGITAL PHOTOGRAPHY VI | 2010年 / 7537卷
关键词
sensor design; image quality; pixel binning; imaging pipeline;
D O I
10.1117/12.839149
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We introduce a new metric, the visible signal-to-noise ratio (vSNR), to analyze how pixel-binning and resizing methods influence noise visibility in uniform areas of an image. The vSNR is the inverse of the standard deviation of the S-CIELAB representation of a uniform field; its units are 1/Delta E. The vSNR metric can be used in simulations to predict how imaging system components affect noise visibility. We use simulations to evaluate two image rendering methods: pixel binning and digital resizing. We show that vSNR increases with scene luminance, pixel size and viewing distance and decreases with read noise. Under low illumination conditions and for pixels with relatively high read noise, images generated with the binning method have less noise (high vSNR) than resized images. The binning method has noticeably lower spatial resolution. The binning method reduces demands on the ADC rate and channel throughput. When comparing binning and resizing, there is an image quality tradeoff between noise and blur. Depending on the application users may prefer one error over another.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] IMAGE QUALITY OF DIGITAL UROGRAMS WHEN USING IMAGE AMPLIFICATION RADIOGRAPHY
    SCHOLZ, A
    LANGER, M
    ZWICKER, C
    FELIX, R
    DIGITALE BILDDIAGNOSTIK, 1989, 9 (01): : 31 - 35
  • [22] Using dynamic pixel value mapping method to construct visible and reversible image watermarking scheme
    Chien-Chang Chen
    Hsin-Cheng Yeh
    Multimedia Tools and Applications, 2018, 77 : 19327 - 19346
  • [23] Quality Evaluation Measures of Pixel - Level Image Fusion Using Fuzzy Logic
    Dammavalam, Srinivasa Rao
    Maddala, Seetha
    Prasad, M. H. M. Krishna
    SWARM, EVOLUTIONARY, AND MEMETIC COMPUTING, PT I, 2011, 7076 : 485 - +
  • [24] Improving SEM Image Quality Using Pixel-Super Resolution Technique
    Lee, Myungjun
    Cantone, Jason
    Xu, Ji
    Sun, Lei
    Kim, Ryoung-han
    METROLOGY, INSPECTION, AND PROCESS CONTROL FOR MICROLITHOGRAPHY XXVIII, 2014, 9050
  • [25] Image Quality Improvement in LCDs With Temporal Division Method Using Pixel Dithering
    Park, Jong-Su
    Song, Jang-Kun
    JOURNAL OF DISPLAY TECHNOLOGY, 2015, 11 (05): : 438 - 442
  • [26] Real-time infrared and visible image fusion network using adaptive pixel weighting strategy
    Zhang, Xuchong
    Zhai, Han
    Liu, Jiaxing
    Wang, Zhiping
    Sun, Hongbin
    INFORMATION FUSION, 2023, 99
  • [27] Assessment of image quality in digital cinema using the motion quality ruler method
    Thiel, Reinhold
    Clark, Paul
    Wheeler, Richard B.
    Jones, Paul W.
    Riveccie, Marcel
    Dupont, Jean-Fabien
    SMPTE MOTION IMAGING JOURNAL, 2007, 116 (2-3): : 61 - 73
  • [28] VIDEOFLUOROGRAPHY AND PULSED FLUOROSCOPY USING A 512X512-PIXEL DIGITAL IMAGE SYSTEM
    HYNES, DM
    EDMONDS, EW
    ROWLANDS, JA
    KRAMETZ, KR
    PACK, WKW
    RADIOLOGY, 1985, 155 (02) : 519 - 523
  • [29] Image quality of compressive single-pixel imaging using different Hadamard orderings
    Vaz, Pedro G.
    Amaral, Daniela
    Requicha Ferreira, L. F.
    Morgado, Miguel
    Cardoso, Joao
    OPTICS EXPRESS, 2020, 28 (08) : 11666 - 11681
  • [30] IMPROVING MEDICAL IMAGE PIXEL QUALITY USING MICQ UNSUPERVISED MACHINE LEARNING TECHNIQUE
    Ahmed, Syed Thouheed
    Kumar, S. Sreedhar
    Guptha, Nirmala S.
    Lavanya, N. L.
    Basha, Syed Muzamil
    Fathima, Afifa Salsabil
    MALAYSIAN JOURNAL OF COMPUTER SCIENCE, 2022, : 53 - 64