A characterization of dual Lorentzian spherical curves in the dual Lorentzian space

被引:0
|
作者
Ayyildiz, Nihat [1 ]
Coken, A. Ceylan [1 ]
Yucesan, Ahmet [1 ]
机构
[1] Suleyman Demiral Univ, Dept Math, TR-32260 Isparta, Turkey
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2007年 / 11卷 / 04期
关键词
dual Lorentzian space; dual Lorentzian spherical curve; spacelike-timelike curve; Frenet vectors;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A differential equation characterizing the dual Lorentzian spherical curves and an explicit solution of this differential equation are given. Also, without the precondition on the dual torsion is nowhere pure-dual, a necessary and sufficient condition for a curve to be dual Lorentzian spherical is presented. In addition, thanks to dual geodesic trihedron, torsion and curvature of dual Lorentzian curve (x) over cap ((s) over right arrow) have been calculated.
引用
收藏
页码:999 / 1018
页数:20
相关论文
共 50 条
  • [21] THE RELATIONS BETWEEN NULL GEODESIC CURVES AND TIMELIKE RULED SURFACES IN DUAL LORENTZIAN SPACE D13
    Unluturk, Yasin
    Yilmaz, Suha
    Ekici, Cumali
    HONAM MATHEMATICAL JOURNAL, 2019, 41 (01): : 185 - 195
  • [22] On the explicit characterization of spherical curves in 3-dimensional Lorentzian space double-struck L3
    Ilarslan, K.
    Camci, C.
    Kocayigit, H.
    Hacisalihoglu, H.H.
    Journal of Inverse and Ill-Posed Problems, 2003, 11 (04): : 389 - 397
  • [23] On Some Characterizations of Ruled Surface of a Closed Timelike Curve in Dual Lorentzian Space
    Özcan Bektaş
    Süleyman Şenyurt
    Advances in Applied Clifford Algebras, 2012, 22 : 939 - 953
  • [24] Dual Split Quaternions and Screw Motion in 3-Dimensional Lorentzian Space
    Sıddıka Özkaldı
    Halit Gündoğan
    Advances in Applied Clifford Algebras, 2011, 21 : 193 - 202
  • [25] On Some Characterizations of Ruled Surface of a Closed Timelike Curve in Dual Lorentzian Space
    Bektas, Ozcan
    Senyurt, Suleyman
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2012, 22 (04) : 939 - 953
  • [26] On constraint manifolds of planar and spherical mechanisms in Lorentzian space
    Aktas, Busra
    MECHANISM AND MACHINE THEORY, 2025, 205
  • [27] On the existence of dual solutions for Lorentzian cost functions
    Kell, Martin
    Suhr, Stefan
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2020, 37 (02): : 343 - 372
  • [28] Bertrand curves of AW(k)-type in Lorentzian space
    Kulahci, Mihriban
    Ergut, Mahmut
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (04) : 1725 - 1731
  • [29] Dual Split Quaternions and Screw Motion in 3-Dimensional Lorentzian Space
    Ozkaldi, Siddika
    Gundogan, Halit
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2011, 21 (01) : 193 - 202
  • [30] On normal curves and their characterizations in Lorentzian n-space
    Kalkan, Ozgur Boyacioglu
    AIMS MATHEMATICS, 2020, 5 (04): : 3510 - 3524