Involution products in Coxeter groups

被引:5
|
作者
Hart, S. B. [1 ]
Rowley, P. J. [2 ]
机构
[1] Univ London, Dept Econ Math & Stat, London WC1E 7HX, England
[2] Univ Manchester, Sch Math, Manchester M13 9PL, Lancs, England
关键词
CONJUGACY CLASSES;
D O I
10.1515/JGT.2010.053
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For W a Coxeter group, let W = {w is an element of W vertical bar w = xy where x, y is an element of W and x(2) = 1 = y(2)}. It is well known that if W is finite then W = W. Suppose that w is an element of W. Then the minimum value of l(x) + l(y) - l(w), where x, y is an element of W with w = xy and x(2) = 1 = y(2), is called the excess of w (l is the length function of W). The main result established here is that w is always W-conjugate to an element with excess equal to zero.
引用
收藏
页码:251 / 259
页数:9
相关论文
共 50 条
  • [41] On outer automorphism groups of Coxeter groups
    Howlett, RB
    Rowley, PJ
    Taylor, DE
    MANUSCRIPTA MATHEMATICA, 1997, 93 (04) : 499 - 513
  • [42] Aspherical coxeter groups that are Quillen groups
    Akita, T
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2000, 32 : 85 - 90
  • [43] ARTIN GROUPS AND INFINITE COXETER GROUPS
    APPEL, KI
    SCHUPP, PE
    INVENTIONES MATHEMATICAE, 1983, 72 (02) : 201 - 220
  • [44] Diagrammatics for Coxeter groups and their braid groups
    Elias, Ben
    Williamson, Geordie
    QUANTUM TOPOLOGY, 2017, 8 (03) : 413 - 457
  • [45] Rigidity of Coxeter groups and Artin groups
    Brady, N
    McCammond, JP
    Mühlherr, B
    Neumann, WD
    GEOMETRIAE DEDICATA, 2002, 94 (01) : 91 - 109
  • [46] On outer automorphism groups of coxeter groups
    R. B. Howlett
    P. J. Rowley
    D. E. Taylor
    manuscripta mathematica, 1997, 93 : 499 - 513
  • [47] Rigidity of Coxeter Groups and Artin Groups
    Noel Brady
    Jonathan P. McCammond
    Bernhard Mühlherr
    Walter D. Neumann
    Geometriae Dedicata, 2002, 94 : 91 - 109
  • [48] Cohomology of Coxeter groups and Artin groups
    De Concini, C
    Salvetti, M
    MATHEMATICAL RESEARCH LETTERS, 2000, 7 (2-3) : 213 - 232
  • [49] Reflection Representations of Coxeter Groups and Homology of Coxeter Graphs
    Hu, Hongsheng
    ALGEBRAS AND REPRESENTATION THEORY, 2024, 27 (01) : 961 - 994
  • [50] Polyhedral products and commutator subgroups of right-angled Artin and Coxeter groups
    Panov, T. E.
    Veryovkin, Ya. A.
    SBORNIK MATHEMATICS, 2016, 207 (11) : 1582 - 1600