The Euler-Poincare equations and semidirect products with applications to continuum theories

被引:673
|
作者
Holm, DD
Marsden, JE
Ratiu, TS
机构
[1] Univ Calif Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
[2] Univ Calif Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA
[3] CALTECH, Pasadena, CA 91125 USA
[4] Univ Calif Santa Cruz, Dept Math, Santa Cruz, CA 95064 USA
基金
美国国家科学基金会;
关键词
D O I
10.1006/aima.1998.1721
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study Euler-Poincare systems (i.e., the Lagrangian analogue of Lie-Poisson Hamiltonian systems) defined on semidirect product Lie algebras. We first give a derivation of the Euler-Poincare equations for a parameter dependent Lagrangian by using a variational principle of Lagrange d'Alembert type. Then we derive an abstract Kelvin-Noether theorem for these equations. We also explore their relation with the theory of Lie-Poisson Hamiltonian systems defined on the dual of a semidirect product Lie algebra. The Legendre transformation in such cases is often not invertible; thus, it does not produce a corresponding Euler-Poincare system on that Lie algebra. We avoid this potential difficulty by developing the theory of Euler-Poincare systems entirely within the Lagrangian framework. We apply the general theory to a number of known examples, including the heavy top, ideal compressible fluids and MHD. We also use this framework to derive higher dimensional Camassa-Holm equations, which have many potentially interesting analytical properties. These equations are Euler-Poincare equations for geodesics on diffeomorphism groups (in the sense of the Arnold program) but where the metric is H-1 rather than L-2. (C) 1998 Academic Press.
引用
收藏
页码:1 / 81
页数:81
相关论文
共 50 条
  • [21] Euler-Poincare Approaches to Nematodynamics
    Gay-Balmaz, Francois
    Ratiu, Tudor S.
    Tronci, Cesare
    ACTA APPLICANDAE MATHEMATICAE, 2012, 120 (01) : 127 - 151
  • [22] Analytical properties of solution for Euler-Poincare equations on solvable Lie algebras
    Izmailova, OV
    Kozlov, VV
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1996, (03): : 60 - 65
  • [23] Euler-Poincare characteristics of abelian varieties
    Coates, J
    Sujatha, R
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 329 (04): : 309 - 313
  • [24] Dissipation and controlled Euler-Poincare systems
    Woolsey, CA
    Bloch, AM
    Leonard, NE
    Marsden, JE
    PROCEEDINGS OF THE 40TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5, 2001, : 3378 - 3383
  • [26] THE THEORY OF BRAUER AND THE EULER-POINCARE CHARACTERISTIC
    ILLUSIE, L
    ASTERISQUE, 1981, (82-8) : 161 - 172
  • [27] EQUIVARIANT EULER-POINCARE CHARACTERISTICS AND TAMENESS
    CHINBURG, T
    EREZ, B
    ASTERISQUE, 1992, (209) : 179 - 194
  • [28] EULER-POINCARE PROPERTIES OF FIRST ORDER
    MALLIAVI.MP
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1969, 268 (10): : 517 - &
  • [29] Genus Versus Euler-Poincare Characteristic
    Popescu-Pampu, Patrick
    WHAT IS THE GENUS?, 2016, 2162 : 149 - 153
  • [30] EULER-POINCARE CHARACTERISTICS AND PRODUCT OF CHARACTERS
    LASCOUX, A
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1984, 299 (10): : 447 - 450