Deep D-Bar: Real-Time Electrical Impedance Tomography Imaging With Deep Neural Networks

被引:250
|
作者
Hamilton, S. J. [1 ]
Hauptmann, A. [2 ]
机构
[1] Marquette Univ, Dept Math Stat & Comp Sci, Milwaukee, WI 53233 USA
[2] UCL, Dept Comp Sci, London WC1E 6BT, England
基金
英国工程与自然科学研究理事会;
关键词
Electrical impedance tomography; D-bar methods; deep learning; conductivity imaging; BOUNDARY; RECONSTRUCTIONS; VENTILATION; UNIQUENESS; ERRORS; CHEST; SHAPE;
D O I
10.1109/TMI.2018.2828303
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The mathematical problem for electrical impedance tomography (EIT) is a highly nonlinear ill-posed inverse problem requiring carefully designed reconstruction procedures to ensure reliable image generation. D-bar methods are based on a rigorous mathematical analysis and provide robust direct reconstructions by using a lowpass filtering of the associated nonlinear Fourier data. Similarly to low-pass filtering of linear Fourier data, only using lowfrequencies in the image recoveryprocess results in blurred images lacking sharp features, such as clear organ boundaries. Convolutional neural networks provide a powerful framework for post-processing such convolved direct reconstructions. In this paper, we demonstrate that theseCNN techniques lead to sharp and reliable reconstructions even for the highly nonlinear inverse problem of EIT. The network is trained on data sets of simulated examples and then applied to experimental data without the need to performan additional transfer training. Results for absolute EIT images are presented using experimental EIT data from the ACT4 and KIT4 EIT systems.
引用
收藏
页码:2367 / 2377
页数:11
相关论文
共 50 条
  • [21] Deep neural networks to enable real-time multimessenger astrophysics
    George, Daniel
    Huerta, E. A.
    PHYSICAL REVIEW D, 2018, 97 (04)
  • [22] A DIRECT D-BAR METHOD FOR PARTIAL BOUNDARY DATA ELECTRICAL IMPEDANCE TOMOGRAPHY WITH A PRIORI INFORMATION
    Alsaker, Melody
    Hamilton, Sarah Jane
    Hauptmann, Andreas
    INVERSE PROBLEMS AND IMAGING, 2017, 11 (03) : 427 - 454
  • [23] Integrating deep neural networks with COSMIC for real-time control
    Pou, B.
    Ferreira, F.
    Quinones, E.
    Martin, M.
    Gratadour, D.
    SOFTWARE AND CYBERINFRASTRUCTURE FOR ASTRONOMY VIII, 2024, 13101
  • [24] Dynamic optimized priors for D-bar reconstructions of human ventilation using electrical impedance tomography
    Alsaker, Melody
    Mueller, Jennifer L.
    Murthy, Rashmi
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 362 : 276 - 294
  • [25] Towards real-time photorealistic 3D holography with deep neural networks
    Shi, Liang
    Li, Beichen
    Kim, Changil
    Kellnhofer, Petr
    Matusik, Wojciech
    NATURE, 2021, 591 (7849) : 234 - +
  • [26] Towards real-time photorealistic 3D holography with deep neural networks
    Liang Shi
    Beichen Li
    Changil Kim
    Petr Kellnhofer
    Wojciech Matusik
    Nature, 2021, 591 : 234 - 239
  • [27] Real-time imaging of epileptic seizures in rats using electrical impedance tomography
    Wang, Lei
    Sun, Yang
    Xu, Xinmin
    Dong, Xiuzhen
    Gao, Feng
    NEUROREPORT, 2017, 28 (11) : 689 - 693
  • [28] Real-time imaging of cerebral infarction in rabbits using electrical impedance tomography
    Yang, Bin
    Shi, Xuetao
    Dai, Meng
    Xu, Canhua
    You, Fushen
    Fu, Feng
    Liu, Ruigang
    Dong, Xiuzhen
    JOURNAL OF INTERNATIONAL MEDICAL RESEARCH, 2014, 42 (01) : 173 - 183
  • [29] The D-Bar Algorithm Fusing Electrical Impedance Tomography with A Priori Radar Data: A Hands-On Analysis
    Rixen, Joeran
    Leonhardt, Steffen
    Moll, Jochen
    Nguyen, Duy Hai
    Ngo, Chuong
    ALGORITHMS, 2023, 16 (01)
  • [30] Real-time intraoperative glioma diagnosis using fluorescence imaging and deep convolutional neural networks
    Shen, Biluo
    Zhang, Zhe
    Shi, Xiaojing
    Cao, Caiguang
    Zhang, Zeyu
    Hu, Zhenhua
    Ji, Nan
    Tian, Jie
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2021, 48 (11) : 3482 - 3492