The mathematical problem for electrical impedance tomography (EIT) is a highly nonlinear ill-posed inverse problem requiring carefully designed reconstruction procedures to ensure reliable image generation. D-bar methods are based on a rigorous mathematical analysis and provide robust direct reconstructions by using a lowpass filtering of the associated nonlinear Fourier data. Similarly to low-pass filtering of linear Fourier data, only using lowfrequencies in the image recoveryprocess results in blurred images lacking sharp features, such as clear organ boundaries. Convolutional neural networks provide a powerful framework for post-processing such convolved direct reconstructions. In this paper, we demonstrate that theseCNN techniques lead to sharp and reliable reconstructions even for the highly nonlinear inverse problem of EIT. The network is trained on data sets of simulated examples and then applied to experimental data without the need to performan additional transfer training. Results for absolute EIT images are presented using experimental EIT data from the ACT4 and KIT4 EIT systems.
机构:
Colorado State Univ, Dept Math, Ft Collins, CO 80523 USAColorado State Univ, Dept Math, Ft Collins, CO 80523 USA
Dodd, Melody
Mueller, Jennifer L.
论文数: 0引用数: 0
h-index: 0
机构:
Colorado State Univ, Dept Math, Ft Collins, CO 80523 USA
Colorado State Univ, Sch Biomed Engn, Ft Collins, CO 80523 USAColorado State Univ, Dept Math, Ft Collins, CO 80523 USA
机构:
Colorado State Univ, Dept Math, Ft Collins, CO 80523 USAColorado State Univ, Dept Math, Ft Collins, CO 80523 USA
Capps, Michael
Mueller, Jennifer L.
论文数: 0引用数: 0
h-index: 0
机构:
Colorado State Univ, Dept Math, Dept Elect & Comp Engn, Ft Collins, CO 80523 USA
Colorado State Univ, Sch Biomed Engn, Ft Collins, CO 80523 USAColorado State Univ, Dept Math, Ft Collins, CO 80523 USA
机构:
Colorado State Univ, Dept Math, Ft Collins, CO 80523 USA
Colorado State Univ, Sch Biomed Engn, Ft Collins, CO 80523 USAColorado State Univ, Dept Math, Ft Collins, CO 80523 USA
Mueller, J. L.
Siltanen, S.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Helsinki, Dept Math & Stat, Helsinki, FinlandColorado State Univ, Dept Math, Ft Collins, CO 80523 USA
机构:
Marquette Univ, Dept Math Stat & Comp Sci, Milwaukee, WI 53201 USAMarquette Univ, Dept Math Stat & Comp Sci, Milwaukee, WI 53201 USA
Hamilton, S. J.
论文数: 引用数:
h-index:
机构:
Reyes, J. M.
Siltanen, S.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Helsinki, Dept Math & Stat, FIN-00014 Helsinki, FinlandMarquette Univ, Dept Math Stat & Comp Sci, Milwaukee, WI 53201 USA
Siltanen, S.
Zhang, X.
论文数: 0引用数: 0
h-index: 0
机构:
Shanghai Jiao Tong Univ, Sch Math Sci, MOE LSC, Shanghai 200240, Peoples R China
Shanghai Jiao Tong Univ, Inst Nat Sci, Shanghai 200240, Peoples R ChinaMarquette Univ, Dept Math Stat & Comp Sci, Milwaukee, WI 53201 USA
机构:
Aalto Univ, Dept Math & Syst Anal, POB 11100, FI-00076 Helsinki, FinlandAalto Univ, Dept Math & Syst Anal, POB 11100, FI-00076 Helsinki, Finland
Hyvonen, Nuutti
Paivarinta, Lassi
论文数: 0引用数: 0
h-index: 0
机构:
Tallinn Univ Technol, Dept Math, Ehitajate Tee 5, EE-19086 Tallinn, EstoniaAalto Univ, Dept Math & Syst Anal, POB 11100, FI-00076 Helsinki, Finland
Paivarinta, Lassi
Tamminen, Janne P.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Helsinki, Dept Math & Stat, POB 68, FI-00014 Helsinki, FinlandAalto Univ, Dept Math & Syst Anal, POB 11100, FI-00076 Helsinki, Finland