Deep D-Bar: Real-Time Electrical Impedance Tomography Imaging With Deep Neural Networks

被引:250
|
作者
Hamilton, S. J. [1 ]
Hauptmann, A. [2 ]
机构
[1] Marquette Univ, Dept Math Stat & Comp Sci, Milwaukee, WI 53233 USA
[2] UCL, Dept Comp Sci, London WC1E 6BT, England
基金
英国工程与自然科学研究理事会;
关键词
Electrical impedance tomography; D-bar methods; deep learning; conductivity imaging; BOUNDARY; RECONSTRUCTIONS; VENTILATION; UNIQUENESS; ERRORS; CHEST; SHAPE;
D O I
10.1109/TMI.2018.2828303
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The mathematical problem for electrical impedance tomography (EIT) is a highly nonlinear ill-posed inverse problem requiring carefully designed reconstruction procedures to ensure reliable image generation. D-bar methods are based on a rigorous mathematical analysis and provide robust direct reconstructions by using a lowpass filtering of the associated nonlinear Fourier data. Similarly to low-pass filtering of linear Fourier data, only using lowfrequencies in the image recoveryprocess results in blurred images lacking sharp features, such as clear organ boundaries. Convolutional neural networks provide a powerful framework for post-processing such convolved direct reconstructions. In this paper, we demonstrate that theseCNN techniques lead to sharp and reliable reconstructions even for the highly nonlinear inverse problem of EIT. The network is trained on data sets of simulated examples and then applied to experimental data without the need to performan additional transfer training. Results for absolute EIT images are presented using experimental EIT data from the ACT4 and KIT4 EIT systems.
引用
收藏
页码:2367 / 2377
页数:11
相关论文
共 50 条
  • [1] A REAL-TIME D-BAR ALGORITHM FOR 2-D ELECTRICAL IMPEDANCE TOMOGRAPHY DATA
    Dodd, Melody
    Mueller, Jennifer L.
    INVERSE PROBLEMS AND IMAGING, 2014, 8 (04) : 1013 - 1031
  • [2] Reconstruction of Organ Boundaries With Deep Learning in the D-Bar Method for Electrical Impedance Tomography
    Capps, Michael
    Mueller, Jennifer L.
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2021, 68 (03) : 826 - 833
  • [3] Imaging cardiac activity by the D-bar method for electrical impedance tomography
    Isaacson, D.
    Mueller, J. L.
    Newell, J. C.
    Siltanen, S.
    PHYSIOLOGICAL MEASUREMENT, 2006, 27 (05) : S43 - S50
  • [4] The D-bar method for electrical impedance tomography-demystified
    Mueller, J. L.
    Siltanen, S.
    INVERSE PROBLEMS, 2020, 36 (09)
  • [5] D-bar method for electrical impedance tomography with discontinuous conductivities
    Knudsen, Kim
    Lassas, Matti
    Mueller, Jennifer L.
    Siltanen, Samuli
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2007, 67 (03) : 893 - 913
  • [6] Beltrami-net: domain-independent deep D-bar learning for absolute imaging with electrical impedance tomography (a-EIT)
    Hamilton, S. J.
    Hanninen, A.
    Hauptmann, A.
    Kolehmainen, V
    PHYSIOLOGICAL MEASUREMENT, 2019, 40 (07)
  • [7] A Hybrid Segmentation and D-Bar Method for Electrical Impedance Tomography
    Hamilton, S. J.
    Reyes, J. M.
    Siltanen, S.
    Zhang, X.
    SIAM JOURNAL ON IMAGING SCIENCES, 2016, 9 (02): : 770 - 793
  • [8] ENHANCING D-BAR RECONSTRUCTIONS FOR ELECTRICAL IMPEDANCE TOMOGRAPHY WITH CONFORMAL MAPS
    Hyvonen, Nuutti
    Paivarinta, Lassi
    Tamminen, Janne P.
    INVERSE PROBLEMS AND IMAGING, 2018, 12 (02) : 373 - 400
  • [9] Deep neural networks in real-time coherent diffraction imaging
    Harder, Ross
    IUCRJ, 2021, 8 : 1 - 3
  • [10] Reconstructions of chest phantoms by the D-bar method for electrical impedance tomography
    Isaacson, D
    Mueller, JL
    Newell, JC
    Siltanen, S
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2004, 23 (07) : 821 - 828