Site-Selective Imination of an Anthracenone Sensor: Selective Fluorescence Detection of Barium(II)

被引:54
|
作者
Basa, Prem N. [1 ]
Bhowmick, Arundhati [1 ]
Schulz, Mariah M. [1 ]
Sykes, Andrew G. [1 ]
机构
[1] Univ S Dakota, Dept Chem, Vermillion, SD 57069 USA
来源
JOURNAL OF ORGANIC CHEMISTRY | 2011年 / 76卷 / 19期
基金
美国国家科学基金会;
关键词
POLYAROMATIC QUINONE IMINES; SCHIFF-BASE; LUMINESCENCE DETECTION; MODEL COMPOUNDS; METAL; ION; CHEMOSENSORS; COMPLEXES; BA2+; RECOGNITION;
D O I
10.1021/jo2013143
中图分类号
O62 [有机化学];
学科分类号
070303 ; 081704 ;
摘要
Site-selective imination of anthraquinone-based macrocyclic crown ethers using titanium tetrachloride as the catalyst yields imines where only the external carbonyl group of the anthraquinone forms Schiff-bases. The following aromatic amines yield monomeric compounds (aniline, 4-nitroaniline, 4-pyrrolaniline, and 1,3-phenylenediamine). Reaction of 2 equiv of the macrocyclic anthraquinone host with 1,2- and 1,4-phenylenediamine yields dimeric imine compounds. The 1,2-diimino host acts as a luminescence sensor, exhibiting enhanced selectivity for Ba(II) ion. Spectroscopic data indicate that two barium ions coordinate to the sensor. Due to E/Z isomerization of the imine, the monomeric complexes are nonluminescent. Restricted rotation about the 1,2 oriented C=N groups or other noncovalent/coordinate-covalent interactions acting between neighboring crown ether rings may inhibit E/Z isomerization in this example, which is different from current examples that employ coordination of a metal cation with a chelating imine nitrogen atom to suppress E/Z isomerization and activate luminescence. The 1,4-diimino adduct, where the crown rings remain widely separated, remains nonluminescent.
引用
收藏
页码:7866 / 7871
页数:6
相关论文
共 50 条
  • [31] Direct Site-Selective Difunctionalization of Pyrazoles
    Liu, Biao
    Wang, Cheng
    Wang, Ziyu
    Zhou, Junqi
    Wen, Jian
    ADVANCED SYNTHESIS & CATALYSIS, 2024, 366 (05) : 1090 - 1095
  • [32] Site-Selective Peptide/Protein Cleavage
    Ni, Jizhi
    Kanai, Motomu
    SITE-SELECTIVE CATALYSIS, 2016, 372 : 103 - 123
  • [33] SITE-SELECTIVE FLUORESCENCE SPECTROSCOPY AS A PROBE OF ELECTRONIC AND STRUCTURAL RELAXATION IN CONJUGATED POLYMERS
    MAHRT, RF
    HEUN, S
    GREINER, A
    BASSLER, H
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1992, 203 : 473 - POLY
  • [34] SITE-SELECTIVE FLUORESCENCE SPECTROSCOPY OF A MATRIX-ISOLATED POLY-OCTYLMETHYLSILANE
    RAUSCHER, U
    BASSLER, H
    TAYLOR, R
    CHEMICAL PHYSICS LETTERS, 1989, 162 (1-2) : 127 - 131
  • [35] Stereospecific α-Sialylation by Site-Selective Fluorination
    Hayashi, Taiki
    Kehr, Gerald
    Bergander, Klaus
    Gilmour, Ryan
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (12) : 3814 - 3818
  • [36] Photocatalytic, site-selective oxidations of carbohydrates
    Gorelik, Daniel J.
    Dimakos, Victoria
    Adrianov, Timur
    Taylor, Mark S.
    CHEMICAL COMMUNICATIONS, 2021, 57 (91) : 12135 - 12138
  • [37] Site-selective spectroscopy of Er in GaN
    Dierolf, V. (vod2@lehigh.edu), 1600, American Institute of Physics Inc. (95):
  • [38] Site-selective metallation of dicarbene precursors
    Bente, Stefanie
    Kampert, Florian
    Tan, Tristan T. Y.
    Hahn, F. Ekkehardt
    CHEMICAL COMMUNICATIONS, 2018, 54 (91) : 12887 - 12890
  • [39] Site-selective oxidations on microelectrode arrays
    Nguyen, Bichlien H.
    Moeller, Kevin D.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 246
  • [40] Site-Selective Electrochemical Oxidation of Glycosides
    Witte, Martin D.
    Beil, Sebastian B.
    Minnaard, Adriaan J.
    Kidonakis, Marios
    Villotet, Augustin
    ACS CATALYSIS, 2023, 13 (04) : 2335 - 2340