Zero-Shot Text-Guided Object Generation with Dream Fields

被引:178
|
作者
Jain, Ajay [1 ,2 ]
Mildenhall, Ben [2 ]
Barron, Jonathan T. [2 ]
Abbeel, Pieter [1 ]
Poole, Ben [2 ]
机构
[1] Univ Calif Berkeley, Berkeley, CA 94720 USA
[2] Google Res, Mountain View, CA 94043 USA
关键词
D O I
10.1109/CVPR52688.2022.00094
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We combine neural rendering with multi-modal image and text representations to synthesize diverse 3D objects solely from natural language descriptions. Our method, Dream Fields, can generate the geometry and color of a wide range of objects without 3D supervision. Due to the scarcity of diverse, captioned 3D data, prior methods only generate objects from a handful of categories, such as ShapeNet. Instead, we guide generation with image-text models pre-trained on large datasets of captioned images from the web. Our method optimizes a Neural Radiance Field from many camera views so that rendered images score highly with a target caption according to a pre-trained CLIP model. To improve fidelity and visual quality, we introduce simple geometric priors, including sparsity-inducing transmittance regularization, scene bounds, and new MLP architectures. In experiments, Dream Fields produce realistic, multi-view consistent object geometry and color from a variety of natural language captions.
引用
收藏
页码:857 / 866
页数:10
相关论文
共 50 条
  • [11] Inference guided feature generation for generalized zero-shot learning
    Han, Zongyan
    Fu, Zhenyong
    Li, Guangyu
    Yang, Jian
    NEUROCOMPUTING, 2021, 430 : 150 - 158
  • [12] ProZe: Explainable and Prompt-Guided Zero-Shot Text Classification
    Harrando, Ismail
    Reboud, Alison
    Schleider, Thomas
    Ehrhart, Thibault
    Troncy, Raphael
    IEEE INTERNET COMPUTING, 2022, 26 (06) : 69 - 77
  • [13] Semantics-Guided Contrastive Network for Zero-Shot Object Detection
    Yan, Caixia
    Chang, Xiaojun
    Luo, Minnan
    Liu, Huan
    Zhang, Xiaoqin
    Zheng, Qinghua
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (03) : 1530 - 1544
  • [14] Zero-Shot Turkish Text Classification
    Birim, Ahmet
    Erden, Mustafa
    Arslan, Levent M.
    29TH IEEE CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS (SIU 2021), 2021,
  • [15] ZERO-SHOT OBJECT DETECTION WITH TRANSFORMERS
    Zheng, Ye
    Cui, Li
    2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, : 444 - 448
  • [16] A Survey of Zero-Shot Object Detection
    Cao, Weipeng
    Yao, Xuyang
    Xu, Zhiwu
    Liu, Ye
    Pan, Yinghui
    Ming, Zhong
    BIG DATA MINING AND ANALYTICS, 2025, 8 (03): : 726 - 750
  • [17] Zero-Shot Camouflaged Object Detection
    Li, Haoran
    Feng, Chun-Mei
    Xu, Yong
    Zhou, Tao
    Yao, Lina
    Chang, Xiaojun
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2023, 32 : 5126 - 5137
  • [18] Example-guided stylized response generation in zero-shot setting
    Guirong BAI
    Shizhu HE
    Kang LIU
    Jun ZHAO
    Science China(Information Sciences), 2022, 65 (04) : 267 - 268
  • [19] Contrastive Prototype-Guided Generation for Generalized Zero-Shot Learning
    Wang, Yunyun
    Mao, Jian
    Guo, Chenguang
    Chen, Songcan
    NEURAL NETWORKS, 2024, 176
  • [20] Example-guided stylized response generation in zero-shot setting
    Bai, Guirong
    He, Shizhu
    Liu, Kang
    Zhao, Jun
    SCIENCE CHINA-INFORMATION SCIENCES, 2022, 65 (04)