On 4-dimensional elation Laguerre planes admitting simple Lie groups of automorphisms

被引:5
|
作者
Steinke, GF [1 ]
机构
[1] Univ Canterbury, Dept Math, Christchurch 1, New Zealand
关键词
D O I
10.1515/form.11.1.79
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper concerns 4-dimensional (topological locally compact connected) elation Laguerre planes that admit large automorphism groups. In particular, it is shown that such a plane is classical if its automorphism group is at least Ii-dimensional. Furthermore, the elation Laguerre planes admitting simple Lie groups of automorphisms are investigated and various characterizations of the classical complex Laguerre plane and the semi-classical Laguerre planes are obtained. 1991 Mathematics Subject Classification: 51H15.
引用
收藏
页码:79 / 103
页数:25
相关论文
共 50 条
  • [21] Metrics on 4-dimensional unimodular Lie groups
    Scott Van Thuong
    Annals of Global Analysis and Geometry, 2017, 51 : 109 - 128
  • [22] On groups and Lie algebras admitting a Frobenius group of automorphisms
    Caldeira, Jhone
    de Melo, Emerson
    Shumyatsky, Pavel
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2012, 216 (12) : 2730 - 2736
  • [23] Metrics on 4-dimensional unimodular Lie groups
    Van Thuong, Scott
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2017, 51 (02) : 109 - 128
  • [24] Cotangent bundles of 4-dimensional hypercomplex Lie groups
    Anna Fino
    manuscripta mathematica, 2002, 109 : 527 - 541
  • [25] Simple ω-Lie Algebras and 4-Dimensional ω-Lie Algebras Over C
    Chen, Yin
    Zhang, Runxuan
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2017, 40 (03) : 1377 - 1390
  • [26] LEFT INVARIANT (α, β)-METRICS ON 4-DIMENSIONAL LIE GROUPS
    Atashafrouz, Mona
    Najafi, Behzad
    Piscoran, Laurian-Ioan
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2020, 35 (03): : 727 - 740
  • [27] Lorentz geometry of 4-dimensional nilpotent Lie groups
    Bokan, N.
    Sukilovic, T.
    Vukmirovic, S.
    GEOMETRIAE DEDICATA, 2015, 177 (01) : 83 - 102
  • [28] Lorentz geometry of 4-dimensional nilpotent Lie groups
    N. Bokan
    T. Šukilović
    S. Vukmirović
    Geometriae Dedicata, 2015, 177 : 83 - 102
  • [29] Cotangent bundles of 4-dimensional hypercomplex Lie groups
    Fino, A
    MANUSCRIPTA MATHEMATICA, 2002, 109 (04) : 527 - 541
  • [30] Homogeneous Geodesics of 4-dimensional Solvable Lie Groups
    Inoguchi, Jun-ichi
    INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, 2024, 17 (01): : 106 - 136