A filtered backprojection algorithm with characteristics of the iterative landweber algorithm

被引:43
|
作者
Zeng, Gengsheng L. [1 ]
机构
[1] Univ Utah, Dept Radiol, UCAIR, Salt Lake City, UT 84108 USA
关键词
image reconstruction; iterative reconstruction algorithm; analytical reconstruction algorithm; tomography; RECONSTRUCTION; IMAGES; TOMOGRAPHY;
D O I
10.1118/1.3673956
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: In order to eventually develop an analytical algorithm with noise characteristics of an iterative algorithm, this technical note develops a window function for the filtered backprojection (FBP) algorithm in tomography that behaves as an iterative Landweber algorithm. Methods: Based on the formulation of the iterative Landweber algorithm, a frequency domain window function is derived for each iteration of the Landweber algorithm. The resultant window function has an index k, emulating the characteristics of the Landweber algorithm at the kth iteration. The window function is used to modify the ramp filter in the FBP algorithm. Results: Computer simulations show that the windowed FBP algorithm with window function index k and the iterative Landweber algorithm iteration number k give similar reconstructions in terms of resolution and noise. Conclusions: Analytical FBP algorithms are able to provide similar results to the iterative Landweber algorithm if the ramp filter in the FBP algorithm is modified by a set of specially designed window functions. (C) 2012 American Association of Physicists in Medicine. [DOI: 10.1118/1.3673956]
引用
收藏
页码:603 / 607
页数:5
相关论文
共 50 条
  • [1] AN ITERATIVE FILTERED BACKPROJECTION INVERSE TREATMENT PLANNING ALGORITHM FOR TOMOTHERAPY
    HOLMES, TW
    MACKIE, TR
    RECKWERDT, P
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 1995, 32 (04): : 1215 - 1225
  • [2] Relation between the filtered backprojection algorithm and the backprojection algorithm in CT
    Wei, YC
    Wang, G
    Hsieh, J
    IEEE SIGNAL PROCESSING LETTERS, 2005, 12 (09) : 633 - 636
  • [5] Optical implementation of the filtered backprojection algorithm
    Madec, Morgan
    Fasquel, Jean-Baptiste
    Uhring, Wilfried
    Joffre, Pascal
    Herve, Yannick
    OPTICAL ENGINEERING, 2007, 46 (10)
  • [6] Model based filtered backprojection algorithm: A tutorial
    Zeng G.L.
    Zeng, G. L. (larryzeng@weber.edu), 1600, Springer Verlag (04): : 3 - 18
  • [7] Quantifying Differences in Image Quality Between Filtered Backprojection, An Adaptive Iterative Reconstruction Algorithm, and a Model-Based Iterative Reconstruction Algorithm for CT
    Whitson, H.
    Griglock, T.
    DeWeese, L.
    MEDICAL PHYSICS, 2017, 44 (06) : 3113 - 3113
  • [8] The semidiscrete filtered backprojection algorithm is optimal for tomographic inversion
    Rieder, A
    Faridani, A
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2003, 41 (03) : 869 - 892
  • [9] The Application of the Filtered Backprojection Algorithm to Solar Rotational Tomography
    Cho, Kyuhyoun
    Chae, Jongchul
    Kwon, Ryun-Young
    Bong, Su-Chan
    Cho, Kyung-Suk
    ASTROPHYSICAL JOURNAL, 2020, 895 (01):
  • [10] INTRODUCTION OF TOTAL VARIATION REGULARIZATION INTO FILTERED BACKPROJECTION ALGORITHM
    Raczynski, L.
    Wislicki, W.
    Klimaszewski, K.
    Krzemien, W.
    Kowalski, P.
    Shopa, R. Y.
    Bialas, P.
    Curceanu, C.
    Czerwinski, E.
    Dulski, K.
    Gajos, A.
    Glowacz, B.
    Gorgol, M.
    Hiesmayr, B.
    Jasinska, B.
    Kisielewska-Kaminska, D.
    Korcyl, G.
    Kozik, T.
    Krawczyk, N.
    Kubicz, E.
    Mohammed, M.
    Pawlik-Niedzwiecka, M.
    Niedzwiecki, S.
    Palka, M.
    Rudy, Z.
    Sharma, N. G.
    Sharma, S.
    Silarski, M.
    Skurzok, M.
    Wieczorek, A.
    Zgardzinska, B.
    Zielinski, M.
    Moskal, P.
    ACTA PHYSICA POLONICA B, 2017, 48 (10): : 1611 - 1618