INTRODUCTION OF TOTAL VARIATION REGULARIZATION INTO FILTERED BACKPROJECTION ALGORITHM

被引:0
|
作者
Raczynski, L. [1 ]
Wislicki, W. [1 ]
Klimaszewski, K. [1 ]
Krzemien, W. [2 ]
Kowalski, P. [1 ]
Shopa, R. Y. [1 ]
Bialas, P. [3 ]
Curceanu, C. [4 ]
Czerwinski, E. [3 ]
Dulski, K. [3 ]
Gajos, A. [3 ]
Glowacz, B. [3 ]
Gorgol, M. [5 ]
Hiesmayr, B. [6 ]
Jasinska, B. [5 ]
Kisielewska-Kaminska, D. [3 ]
Korcyl, G. [3 ]
Kozik, T. [3 ]
Krawczyk, N. [3 ]
Kubicz, E. [3 ]
Mohammed, M. [3 ,7 ]
Pawlik-Niedzwiecka, M. [3 ]
Niedzwiecki, S. [3 ]
Palka, M. [3 ]
Rudy, Z. [3 ]
Sharma, N. G. [3 ]
Sharma, S. [3 ]
Silarski, M. [3 ]
Skurzok, M. [3 ]
Wieczorek, A. [3 ]
Zgardzinska, B. [5 ]
Zielinski, M. [3 ]
Moskal, P. [3 ]
机构
[1] Natl Ctr Nucl Res, Dept Complex Syst, Otwock, Poland
[2] Natl Ctr Nucl Res, High Energy Phys Div, Otwock, Poland
[3] Jagiellonian Univ, Fac Phys Astron & Appl Comp Sci, Krakow, Poland
[4] Ist Nazl Fis Nucl, Lab Nazl Frascati, Frascati, Italy
[5] Marie Curie Sklodowska Univ, Inst Phys, Lublin, Poland
[6] Univ Vienna, Fac Phys, Vienna, Austria
[7] Univ Mosul, Coll Educ Pure Sci, Dept Phys, Mosul, Iraq
来源
ACTA PHYSICA POLONICA B | 2017年 / 48卷 / 10期
基金
奥地利科学基金会;
关键词
TIME-OF-FLIGHT; PLASTIC SCINTILLATORS; PET; RECONSTRUCTION; RESTORATION; SIGNALS;
D O I
10.5506/APhysPolB.48.1611
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we extend the state-of-the-art filtered backprojection (FBP) method with application of the concept of Total Variation regularization. We compare the performance of the new algorithm with the most common form of regularizing in the FBP image reconstruction via apodizing functions. The methods are validated in terms of cross-correlation coefficient between reconstructed and real image of radioactive tracer distribution using the standard Derenzo-type phantom. We demonstrate that the proposed approach results in higher cross-correlation values with respect to the standard FBP method.
引用
收藏
页码:1611 / 1618
页数:8
相关论文
共 50 条
  • [2] Relation between the filtered backprojection algorithm and the backprojection algorithm in CT
    Wei, YC
    Wang, G
    Hsieh, J
    IEEE SIGNAL PROCESSING LETTERS, 2005, 12 (09) : 633 - 636
  • [3] Total variation constrained iterative filtered backprojection CT reconstruction method
    Ma, Jiming
    Zhang, Jianqi
    Song, Guzhou
    Wang, Qunshu
    Han, Changcai
    Duan, Baojun
    Guangxue Xuebao/Acta Optica Sinica, 2015, 35 (02):
  • [4] Optical implementation of the filtered backprojection algorithm
    Madec, Morgan
    Fasquel, Jean-Baptiste
    Uhring, Wilfried
    Joffre, Pascal
    Herve, Yannick
    OPTICAL ENGINEERING, 2007, 46 (10)
  • [6] Model based filtered backprojection algorithm: A tutorial
    Zeng G.L.
    Zeng, G. L. (larryzeng@weber.edu), 1600, Springer Verlag (04): : 3 - 18
  • [7] The semidiscrete filtered backprojection algorithm is optimal for tomographic inversion
    Rieder, A
    Faridani, A
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2003, 41 (03) : 869 - 892
  • [8] The Application of the Filtered Backprojection Algorithm to Solar Rotational Tomography
    Cho, Kyuhyoun
    Chae, Jongchul
    Kwon, Ryun-Young
    Bong, Su-Chan
    Cho, Kyung-Suk
    ASTROPHYSICAL JOURNAL, 2020, 895 (01):
  • [9] An iteratively reweighted norm algorithm for Total Variation regularization
    Rodriguez, Paul
    Wohlberg, Brendt
    2006 FORTIETH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS AND COMPUTERS, VOLS 1-5, 2006, : 892 - +
  • [10] A phase retrieval algorithm based on total variation regularization
    Lian Q.-S.
    Wei T.-J.
    Chen S.-Z.
    Shi B.-S.
    Lian, Qiu-Sheng (lianqs@ysu.edu.cn), 1600, Chinese Institute of Electronics (45): : 54 - 60