Optimal error bound and truncation regularization method for a backward time-fractional diffusion problem in Hilbert scales

被引:7
|
作者
Dinh Nguyen Duy Hai [1 ,2 ]
Dang Duc Trong [3 ]
机构
[1] Duy Tan Univ, Inst Fundamental & Appl Sci, Ho Chi Minh City 700000, Vietnam
[2] Duy Tan Univ, Fac Nat Sci, Da Nang 550000, Vietnam
[3] Viet Nam Natl Univ, Univ Nat Sci, Dept Math & Comp Sci, Ho Chi Minh City, Vietnam
关键词
Backward time-fractional diffusion equation; Ill-posedness; Truncation method; Optimal estimates; EQUATIONS;
D O I
10.1016/j.aml.2020.106448
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate a backward problem for a time-fractional diffusion equation in a general abstract Hilbert space. We show that the problem is ill-posed and further apply a truncation regularization method to solve it. Based on a Holder-type smoothness assumption of the exact solution, asymptotically optimal estimates for the worst case error of the method in Hilbert scales are proved. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Regularization of a backward problem for 2-D time-fractional diffusion equations with discrete random noise
    Nguyen Huy Tuana
    Le Nhat Huynh
    Zhou, Yong
    APPLICABLE ANALYSIS, 2021, 100 (02) : 335 - 360
  • [42] Regularization of the Final Value Problem for the Time-Fractional Diffusion Equation
    Al-Jamal, Mohammad F.
    Barghout, Kamal
    Abu-Libdeh, Nidal
    IRANIAN JOURNAL OF SCIENCE, 2023, 47 (03) : 931 - 941
  • [43] Fourier regularization for a final value time-fractional diffusion problem
    Yang, Ming
    Liu, Jijun
    APPLICABLE ANALYSIS, 2015, 94 (07) : 1508 - 1526
  • [44] Regularization of the Final Value Problem for the Time-Fractional Diffusion Equation
    Mohammad F. Al-Jamal
    Kamal Barghout
    Nidal Abu-Libdeh
    Iranian Journal of Science, 2023, 47 : 931 - 941
  • [45] A Tikhonov regularization method for solving a backward time-space fractional diffusion problem
    Feng, Xiaoli
    Zhao, Meixia
    Qian, Zhi
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 411
  • [46] Tikhonov-type regularization method for a sideways problem of the time-fractional diffusion equation
    Zhang, Hongwu
    Zhang, Xiaoju
    AIMS MATHEMATICS, 2021, 6 (01): : 90 - 101
  • [47] A MODIFIED QUASI-BOUNDARY VALUE METHOD FOR THE BACKWARD TIME-FRACTIONAL DIFFUSION PROBLEM
    Wei, Ting
    Wang, Jun-Gang
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2014, 48 (02): : 603 - 621
  • [48] The quasi-reversibility regularization method for backward problems of the time-fractional diffusion-wave equation
    Wen, Jin
    Wang, Yong-Ping
    PHYSICA SCRIPTA, 2023, 98 (09)
  • [49] A REGULARIZATION METHOD FOR TIME-FRACTIONAL LINEAR INVERSE DIFFUSION PROBLEMS
    Nguyen Huy Tuan
    Kirane, Mokhtar
    Vu Cam Hoan Luu
    Bin-Mohsin, Bandar
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2016,
  • [50] Fractional Tikhonov regularization method in Hilbert scales
    Mekoth, Chitra
    George, Santhosh
    Jidesh, P.
    APPLIED MATHEMATICS AND COMPUTATION, 2021, 392