Super-Earth Internal Structures and Initial Thermal States

被引:38
|
作者
Boujibar, A. [1 ]
Driscoll, P. [1 ]
Fei, Y. [1 ]
机构
[1] Carnegie Inst Sci, Earth & Planets Lab, Washington, DC 20005 USA
关键词
Super-Earth; extrasolar planets; interiors; magnetic fields; magma oceans; EQUATION-OF-STATE; PHASE-TRANSITIONS; EVOLUTION; VENUS; SHOCK; CORE; PEROVSKITE; MGSIO3; ROCKY; FE;
D O I
10.1029/2019JE006124
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The presence of a planetary magnetic field is an important ingredient for habitability. The coexistence of a solid and a liquid core can facilitate the maintenance of a compositionally driven dynamo; however, the likelihood of such a configuration in super-Earths is unknown. Recently, shock experiments and ab initio calculations have constrained the stability, equations of state, and melting properties of ultrahigh pressure core and mantle phases. Here, we investigate the internal structure of super-Earth exoplanets with a range of total masses and core mass fractions ranging from that of Mars (0.2) to Mercury (0.68), including an Earth-like bulk composition. We examine the effect of the initial core-mantle boundary temperature (T-CMB) on their internal structure and identify regimes with coexisting solid and liquid cores, and deep mantle melting. We find that the range of T-CMB for which an inner core is growing increases with the total planet mass and even more with the core mass fraction. Therefore, our results suggest that super-Earths should have a crystallizing core over a large temperature range. We also find that the presence of a growing inner core is likely to be accompanied by a partially liquid lower mantle, which will likely influence planetary thermal evolution. We estimate the initial CMB temperature after super-Earth accretion by assuming an accretional heat retention efficiency similar to Earth. We find that massive super-Earths are expected to have an initial internal temperature consistent with a partially liquid core, allowing for the possibility of thermal and compositional dynamo action.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Rotational Shearing Interferometer in Detection of the Super-Earth Exoplanets
    Strojnik, Marija
    APPLIED SCIENCES-BASEL, 2022, 12 (06):
  • [42] The imprint of the protoplanetary disc in the accretion of super-Earth envelopes
    Ali-Dib, Mohamad
    Cumming, Andrew
    Lin, Douglas N. C.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2020, 494 (02) : 2440 - 2448
  • [43] Dynamical constraints on outer planets in super-Earth systems
    Read, Matthew J.
    Wyatt, Mark C.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2016, 457 (01) : 465 - 478
  • [44] Geodynamics of Super-Earth GJ 486b
    Meier, Tobias G.
    Bower, Dan J.
    Lichtenberg, Tim
    Hammond, Mark
    Tackley, Paul J.
    Pierrehumbert, Raymond T.
    Caballero, Jose A.
    Tsai, Shang-Min
    Mansfield, Megan Weiner
    Tosi, Nicola
    Baumeister, Philipp
    JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2024, 129 (10)
  • [45] Architectures of Compact Super-Earth Systems Shaped by Instabilities
    Goldberg, Max
    Batygin, Konstantin
    ASTRONOMICAL JOURNAL, 2022, 163 (05):
  • [46] Constraints on Super-Earth Interiors from Stellar Abundances
    Brugger, B.
    Mousis, O.
    Deleuil, M.
    Deschamps, F.
    ASTROPHYSICAL JOURNAL, 2017, 850 (01):
  • [47] Penetrative Convection in Super-Earth Planets: Consequences of MgSiO3 Postperovskite Dissociation Transition and Implications for Super-Earth GJ 876 d
    Shahnas, M. H.
    Pysklywec, R. N.
    Yuen, D. A.
    JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2018, 123 (08) : 2162 - 2177
  • [48] A super-Earth orbiting the nearby M dwarf GJ 536
    Suarez Mascareno, A.
    Gonzalez Hernandez, J. I.
    Rebolo, R.
    Astudillo-Defru, N.
    Bonfils, X.
    Bouchy, F.
    Delfosse, X.
    Forveille, T.
    Lovis, C.
    Mayor, M.
    Murgas, F.
    Pepe, F.
    Santos, N. C.
    Udry, S.
    Wunsche, A.
    Velasco, S.
    ASTRONOMY & ASTROPHYSICS, 2017, 597
  • [49] GJ 832c: A SUPER-EARTH IN THE HABITABLE ZONE
    Wittenmyer, Robert A.
    Tuomi, Mikko
    Butler, R. P.
    Jones, H. R. A.
    Anglada-Escude, Guillem
    Horner, Jonathan
    Tinney, C. G.
    Marshall, J. P.
    Carter, B. D.
    Bailey, J.
    Salter, G. S.
    O'Toole, S. J.
    Wright, D.
    Crane, J. D.
    Schectman, S. A.
    Arriagada, P.
    Thompson, I.
    Minniti, D.
    Jenkins, J. S.
    Diaz, M.
    ASTROPHYSICAL JOURNAL, 2014, 791 (02):
  • [50] TESS Discovery of a Transiting Super-Earth in the pi Mensae System
    Huang, Chelsea X.
    Burt, Jennifer
    Vanderburg, Andrew
    Gunther, Maximilian N.
    Shporer, Avi
    Dittmann, Jason A.
    Winn, Joshua N.
    Wittenmyer, Rob
    Sha, Lizhou
    Kane, Stephen R.
    Ricker, George R.
    Vanderspek, Roland K.
    Latham, David W.
    Seager, Sara
    Jenkins, Jon M.
    Caldwell, Douglas A.
    Collins, Karen A.
    Guerrero, Natalia
    Smith, Jeffrey C.
    Quinn, Samuel N.
    Udry, Stephane
    Pepe, Francesco
    Bouchy, Francois
    Segransan, Damien
    Lovis, Christophe
    Ehrenreich, David
    Marmier, Maxime
    Mayor, Michel
    Wohler, Bill
    Haworth, Kari
    Morgan, Edward H.
    Fausnaugh, Michael
    Ciardi, David R.
    Christiansen, Jessie
    Charbonneau, David
    Dragomir, Diana
    Deming, Drake
    Glidden, Ana
    Levine, Alan M.
    McCullough, P. R.
    Yu, Liang
    Narita, Norio
    Nguyen, Tam
    Morton, Tim
    Pepper, Joshua
    Pal, Andras
    Rodriguez, Joseph E.
    Stassun, Keivan G.
    Torres, Guillermo
    Sozzetti, Alessandro
    ASTROPHYSICAL JOURNAL LETTERS, 2018, 868 (02)