Hip Motion Measurement and Classification Using Millimeter Wave Radar and Convolutional Neural Networks

被引:1
|
作者
Bresnahan, Drew G. [1 ]
Li, Yang [1 ]
机构
[1] Baylor Univ, Dept Elect & Comp Engn, Waco, TX 76798 USA
基金
美国国家科学基金会;
关键词
Hip; motions; human; movement; physiology; millimeter wave radar; neural networks; FMCW RADAR; HEAD;
D O I
10.1109/WMCS55582.2022.9866093
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
After hip joint injury or replacement surgery, patients must undergo regular hip motion rehabilitation. This study seeks to replace the in-person doctor's assessment with non-contact radar sensing. Multiple test subjects perform three hip motion patterns while being scanned by a millimeter wave radar. The micro-Doppler signatures are processed into a spectrogram image format for analysis. The different hip motions exhibit unique time-frequency features which are exploited by a convolutional neural network to classify the activities.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Convolutional neural networks for radar detection
    López-Risueño, G
    Grajal, J
    Haykin, S
    Díaz-Oliver, R
    ARTIFICIAL NEURAL NETWORKS - ICANN 2002, 2002, 2415 : 1150 - 1155
  • [42] Malware Classification using Deep Convolutional Neural Networks
    Kornish, David
    Geary, Justin
    Sansing, Victor
    Ezekiel, Soundararajan
    Pearlstein, Larry
    Njilla, Laurent
    2018 IEEE APPLIED IMAGERY PATTERN RECOGNITION WORKSHOP (AIPR), 2018,
  • [43] Age and Gender Classification using Convolutional Neural Networks
    Levi, Gil
    Hassner, Tal
    2015 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2015,
  • [44] Classification of Blurred Flowers Using Convolutional Neural Networks
    Chen, Chao
    Yan, Qi
    Li, Meng
    Tong, Jijun
    ICDLT 2019: 2019 3RD INTERNATIONAL CONFERENCE ON DEEP LEARNING TECHNOLOGIES, 2019, : 71 - 74
  • [45] Crowd Video Classification using Convolutional Neural Networks
    Burney, Atika
    Syed, Tahir Q.
    PROCEEDINGS OF 14TH INTERNATIONAL CONFERENCE ON FRONTIERS OF INFORMATION TECHNOLOGY PROCEEDINGS - FIT 2016, 2016, : 247 - 251
  • [46] Classification of orbital tumors using convolutional neural networks
    Esraa Allam
    Abdel-Badeeh M. Salem
    Marco Alfonse
    Neural Computing and Applications, 2024, 36 : 6025 - 6035
  • [47] Classification of EEG signal using convolutional neural networks
    Wang, Jianhua
    Yu, Gaojie
    Zhong, Liu
    Chen, Weihai
    Sun, Yu
    PROCEEDINGS OF THE 2019 14TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA 2019), 2019, : 1694 - 1698
  • [48] Hyperspectral Image Classification using Convolutional Neural Networks
    Shambulinga, M.
    Sadashivappa, G.
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2021, 12 (06) : 702 - 708
  • [49] Classification of lung sounds using convolutional neural networks
    Murat Aykanat
    Özkan Kılıç
    Bahar Kurt
    Sevgi Saryal
    EURASIP Journal on Image and Video Processing, 2017
  • [50] DYNAMIC SCENE CLASSIFICATION USING CONVOLUTIONAL NEURAL NETWORKS
    Gangopadhyay, Aalok
    Tripathi, Shivam Mani
    Jindal, Ishan
    Raman, Shanmuganathan
    2016 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP), 2016, : 1255 - 1259